RESOURCE ASSESSMENT SERVICE MARYLAND GEOLOGICAL SURVEY Emery T. Cleaves, Director

COASTAL AND ESTUARINE GEOLOGY FILE REPORT NO. 02-05

Shoreline Erosion as a Source of Sediments and Nutrients Northern Coastal Bays, Maryland

by

Darlene V. Wells, E. Lamere Hennessee and James M. Hill

This study was funded by the Maryland Coastal Zone Management Program of the Maryland Department of Natural Resources pursuant to National Oceanic and Atmospheric Administration Award No. NA07OZ0118

December 2002

RESOURCE ASSESSMENT SERVICE MARYLAND GEOLOGICAL SURVEY Emery T. Cleaves, Director

COASTAL AND ESTUARINE GEOLOGY FILE REPORT NO. 02-05

Shoreline Erosion as a Source of Sediments and Nutrients Northern Coastal Bays, Maryland

by

Darlene V. Wells, E. Lamere Hennessee and James M. Hill

This study was funded by the Maryland Coastal Zone Management Program of the Maryland Department of Natural Resources pursuant to National Oceanic and Atmospheric Administration Award No. NA070Z0118

December 2002

For information or additional copies, please contact:

Maryland Department of Natural Resources Maryland Geological Survey 2300 St. Paul Street Baltimore, MD 21218 (410) 554-5500 Website: <u>www.mgs.md.gov</u>

The facilities and services of the Maryland Department of Natural Resources are available to all without regard to race, color, religion, sex, sexual orientation, age, national origin or physical or mental disability.

This document is available in alternative format upon request from a qualified individual with a disability.

TABLE OF CONTENTS

		Page
	Executive Summary	
1.	Introduction	
	Objectives	
	Acknowledgements	
2.	Previous Studies	
	Shoreline Change and Coastal Land Loss Studies	
	Nutrient Budget and Pollutant Loading Studies	
3.	Study Area	
	Geomorphology	
	Geology	
	Bay Bottom Sediments	
4.	Methods	
	Selection of Sampling Sites	
	Field Methods	
	Laboratory Methods	
	Quantifying Land Loss	
	Bank Height	
	Sediments	24
	Core Processing	
	Bulk Density and Water Content	
	Grain Size Analysis	
	Chemical Analysis	
	Data Reduction	
5.	Results and Discussion	
	Field and Lab Observations	29
	Land Loss (Area and Volume)	
	Sediments	
	Bulk Density	32
	Water Content	
	Texture (Grain size composition)	
	Nutrients	
	Metals	
	Regression Analysis	
	Sediments and Nutrient Loadings	
	Comparison with existing models and previous studies	41
6.	Conclusions	45
	Recommendations	45
7.	References	47
	and the A Site descriptions and some 1	52
-	opendix A - Site descriptions and core logs	
	opendix B - Quality Assurance/Quality Control	
Ap	opendix C - Data Tables	
Ap	pendix D - Land loss and loading calculations	137

Figures

		Page
Figure 3-1.	The Delmarva Peninsula, showing the location of the	
	study area	8
Figure 3-2.	Study area	9
Figure 3-3.	Geology of the study area	11
Figure 3-4.	Distribution of bottom sediments, based on Shepard's	
	(1954) classification	13
Figure 4-1.	Locations of sampling sites and land loss polygons	18
Figure 4-2.	Shepard's (1954) classification of sediment types	27
Figure 5-1.	Bluff at Site 5	29
Figure 5-2.	The main features developed along a marsh shoreline due	
	to wave erosion	29
Figure 5-3.	Pocket beach	30
Figure 5-4.	Mussels armoring scarp face at Site 1	30
Figure 5-5.	Comparison of linear erosion rate and volumetric loss for	
	each land loss polygon	32
Figure 5-6.	Measured wet bulk density as a function of water content	
Figure 5-7.	Difference (%) between measured wet bulk density and	
	B&L bulk density, plotted against the plant content of the	
	sediment	
Figure 5-8.	Total carbon content vs. organic content of the sediments	34
Figure 5-9.	Loadings of sand, silt, and clay for each land loss polygon	41
Figure 5-10.	Annual total nitrogen and total phosphorus loads entering	
	the northern coastal bays, revised to include contributions	
	from shoreline erosion	44
Figure B-1.	Relative standard deviation (%) vs. concentration of total	
	nitrogen for the suite of replicate and triplicate analyses	106
Figure B-2.	Relative standard deviation (%) vs. concentration of total	
	carbon for the suite of replicate and triplicate analyses	106
Figure B-3.	Relative standard deviation (%) vs. concentration of total	
·	phosphorus for the suite of replicate and triplicate analyses	107

Tables

		Page
Table ES-1.	Annual loadings (kg/yr) of nutrients and sediments,	
	northern coastal bays	2
Table 2-1.	Average rates of recession (ft/yr) for reaches of shoreline in	
	the study area, from Volonté and Leatherman (1992)	5
Table 3-1	Morphometric data for Isle of Wight and Assawoman Bays	
	and the St. Martin River	7
Table 4-1	Sampling sites	15
Table 4-2	Land loss polygons and associated sampling sites	20
Table 4-3	Mean bank heights (m) calculated for land loss polygons P15, P16, and P18	23
Table 5-1	Volume (m^3) and rate of land lost during the 47-year period	
	between 1942 and 1989 and linear rates (m/yr) of shoreline	
	erosion, by basin.	31
Table 5-2.	Summary statistics for each of the elements measured in	
14510 0 21	the samples	35
Table 5-3.	Comparison of mass ratios of C, N, and P observed in	
	different samples (sources).	36
Table 5-4.	Comparison of average enrichment factors of certain metals	
	measured in the different groups of sediments from the	
	northern coastal bays	37
Table 5-5.	Coefficients of multiple-stepwise regression of nutrient and	
Tuble 5 5.	metal data	39
Table 5-6	Summary of annual loadings of sediments and nutrients	
	contributed by shoreline erosion in the northern coastal	
	bays.	40
Table 5-7	Annual total nitrogen (TN) and total phosphorus (TN)	
	loadings (kg/yr) to the northern coastal bays, based on the	
	UM and CESI (1993) report.	42
Table 5-8	Annual total nitrogen (TN) and total phosphorus (TP)	
	loadings (kg/yr) to the northern coastal bays, based on	
	TMDL study for the same study area (MDE, 2001)	43
Table 5-9	Comparison of the UM and CESI (1993) loadings and	
	MGS estimates from shoreline erosion for total suspended	
	solids (TSS), Pb and Zn. All loads in kg/yr	44
Table B-1.	Mean and range of water content and calculated weight loss	
	after cleaning for each sediment type (Shepard's (1'954)	
	classification), based on sediments collected in Isle of	
	Wight and Assawoman Bays (Wells and others, 1994)	104
Table B-2.	Mean and range of water content and calculated weight loss	
	after cleaning for each sediment type (Shepard's (1954)	
	classification), based on sediments collected for this study.	104
Table B-3.	Comparison of results of replicate textural analyses of	
	selected core samples	105

		Page
Table B-4.	Results of nitrogen, carbon and sulfur analyses of NIST	8
	SRM 1646 (Estuarine Sediment) and National Research	
	Council of Canada SRM PACS-1 (Marine Sediment)	
	compared to the certified or known values	
Table B-5.	Comparison of certified values to the analytical results	
	from Actlabs for the SRMs.	
Table B-6.	Comparison of certified values to Actlab's analytical	
	results for U.S. Geological Survey standards.	109
Table C-1.	Sample data: physical properties.	
Table C-2.	Sample data: chemical analyses	121
Table D-1.	Area (m^2) and volume (m^3) of land lost during the 47-year	
	period between 1942 and 1989 and linear rates (m/yr) of	
	shoreline erosion, by shoreline reach (land loss polygon)	
Table D-2.	Mean textural and nutrient concentrations calculated for	
	each site using equations D-2 and D-3.	140
Table D-3.	Annual component loadings (Kg/yr) for each land-loss	
	polygon.	142

Equations

Equation 4-1.	Determination of water content as percent wet weight	24
Equation 4-2.	Volume calculation for bluff samples	25
Equation 4-3.	Wet bulk density calculation based on Bennett and	
-	Lambert (1971)	25
Equation 4-4.	Correction factor calculation for core compaction	
Equation 5-1.	Enrichment factor	
Equation 5-2.	Estimate of element concentration based on sediment	
•	components	
Equation D-1.	Determination of annual rate of shoreline retreat	
E quation D-2.	Calculation of mean nutrient concentrations for each	
•	site	139
Equation D-3.	Calculation of mean bulk concentrations of sand, silt,	
•	clay components for each site	139
Equation D-4.	Calculation of nutrient and sediment loadings for each	
•	land loss polygons	141
	1 20	

EXECUTIVE SUMMARY

The Maryland Geological Survey (MGS) began a multi-year study to determine the flux of sediments and nutrients eroding from unprotected shorelines bordering Maryland's coastal bays. The first year of study focused on the northern-most bays: Assawoman and Isle of Wight Bays and the St. Martin River.

Sampling locations were selected on the basis of linear rates of shoreline change, as well as geology and geomorphology (marsh, bluff, or beach). At each of the 16 sites, bank heights were measured. Sediment samples were collected from marshes and beaches and from distinct geologic horizons within banks. Samples were analyzed for grain size composition, bulk density, total organics, total carbon (TC), nitrogen (TN), phosphorus (TP), and a suite of trace metals. The analytical results were then used in conjunction with coastal land loss estimates to determine sediment and nutrient loadings to the bays. Annual land lost was based on a digital comparison of two historical shorelines dating from 1942 and 1989.

Based on geomorphologic variability and differing rates of shoreline erosion, the study area shoreline was divided into 23 reaches, ranging in length from about 600 m to 45,000 m; most were less than 9,000 m long. A template of irregular polygons was constructed to demarcate the reaches, and total land loss (m^2) during the 47-year period was determined for each polygon. These "land loss" polygons provided a structure for organizing the results of the physical and chemical analyses. Each sampling site was associated with one or more of the land loss polygon. Mean bank heights and concentrations of the measured constituents (i.e., TN, TP, TSS, etc. in kg/m³), averaged for each of the sampling sites, were used to calculate annual loadings (kg/yr) for each polygon.

During the 47-year period, shoreline erosion contributed an estimated 11.6 x 10^{6} kg/yr of total sediments into the three-bay system (Table ES-1). Of the total sediment load, approximately 42%, or 4.9 x 10^{6} kg/yr, were total suspendable solids (TSS). That amounts to about one-third of the TSS load from upland (surface) run-off. Annual total sediment loadings were greatest in the St. Martin River (6.9×10^{6} kg/yr), due in part to high bank elevations and relatively dense bluff material. Bulk densities of sediments collected from bluffs averaged 1.4 g/cm³. Total sediment loading from shore erosion in Assawoman Bay was about half that of the St. Martin River (3.2×10^{6} kg/yr). Sediment loadings from Isle of Wight Bay shorelines were even lower (1.5×10^{6} kg/yr). Much of the shoreline bordering Assawoman and Isle of Wight Bays is low-lying marsh, composed of sediments with average bulk densities of 0.4 g/cm³.

Sand-sized sediments account for approximately 57% of the total sediments contributed from shoreline erosion. The sand contributed from erosion about half of the sand coming into the bays. More than one-third of the sand is eroded from the St. Martin River shoreline.

Shoreline erosion is a significant source of nutrients, contributing up to 8.5% of the total nitrogen and total phosphorus delivered to the system. Nutrient contributions from shoreline erosion slightly exceed input from point sources. In addition to nutrients, erosion also

contributes significant amounts of Pb and Zn, accounting for 4% and 9.5%, respectively, of the total loadings of those metals to the bays.

Component	Assawoman Bay	Isle of Wight Bay	St. Martin River	Total
1989 shoreline length (m)	81,164	25,296	59,378	165,839
Total Solids	3,206,065	1,471,477	6,888,572	11,566,114
Suspendable Solids	2,151,542	955,737	1,771,102	4,878,381
Carbon	214,743	87,424	122,398	424,565
Nitrogen	11,649	4,477	7,247	23,373
Phosphorus	1,070	497	777	2,344
Pb	80	29	99	208
Zn	182	77	260	519

Table ES-1. Annual loadings (kg/yr) of nutrients and sediments, northern coastal bays. The 1989 shoreline length applies to the shoreline included in the land loss polygons.

1. INTRODUCTION

The Maryland Coastal Bays Program has developed a four-pronged action plan to restore and protect the natural resources of the State's coastal bays (MCBP, 1999). The plan addresses (1) water quality, (2) fish and wildlife, (3) recreation and navigation, and (4) community and economic development. Meeting the goals associated with the first three of these depends in part on understanding the sediment and nutrient input contributed by shoreline erosion to the coastal bays. Shoreline erosion releases sediments to the water column. Finer-grained sediments tend to remain suspended in the water, reducing water clarity and affecting underwater habitat (e.g., reducing light penetration for submerged aquatic vegetation). The eventual deposition of eroded sediments contributes to the in-filling of navigational channels. Shoreline erosion also acts as a non-point source of nutrients (nitrogen and phosphorus), which affect the water quality of the coastal bays.

Although shoreline erosion has been identified as a source of sediments and nutrients to nearby waters, there has been little effort to quantify that input and to compare it to other sources. To provide this information, the Maryland Geological Survey (MGS) began a multi-year study to determine the flux of sediments and nutrients eroding from unprotected shorelines bordering the coastal bays. The first year of study focused on the northernmost coastal bays: Assawoman Bay, Isle of Wight Bay, and the St. Martin River. The results of that study are presented in this report.

OBJECTIVES

To estimate the nutrient and sediment loads contributed by shoreline erosion to the northern coastal bays of Maryland, MGS set the following objectives:

- 1. Identify unprotected reaches of shoreline at greatest risk of erosion, based on historical linear rates of change;
- 2. Measure certain physical, chemical, and biological properties of eroding sediments; and
- 3. Determine the volume of eroding sediments and the flux of sediments and nutrients into the northern coastal bays. Examine the flux of material from shoreline erosion in the context of existing nutrient budgets for the study area.

ACKNOWLEDGMENTS

This study was funded by the Coastal Zone Management Program of the Maryland Department of Natural Resources pursuant to National Oceanic and Atmospheric Administration Award #NA07OZ0118. The authors extend their gratitude to the many landowners who allowed access to their property, so that MGS might collect samples and measure bank heights. They also wish to thank Neil Dunnemyer, Richard Ortt, Dan Sailsbury, and Geoff Wikel, who assisted with sample collection and laboratory analyses. Special thanks are due to Al Wesche and Jim Casey for their assistance in collecting cores and the use of Fisheries' boat.

2. PREVIOUS STUDIES

SHORELINE CHANGE AND COASTAL LAND LOSS STUDIES

The earliest, comprehensive shoreline change information available for the coastal bays, excluding the upstream portions of some of the tributaries, comes from a 1949 study of tidewater Maryland by Singewald and Slaughter. The authors calculated rates of erosion by comparing two sets of shorelines, dating from *ca*. 1850 and *ca*. 1940. Conkwright (1975) updated their work, producing a series of maps that depict the 1850 and 1940 shorelines on 7.5-minute U.S. Geological Survey (USGS) topographic quadrangles. The most recent shorelines shown on the topographic base maps range between 1942 and 1972.

Using the shoreline change data reported by Singwald and Slaughter, Bartberger (1973, 1976) estimated the volume of sediment contributed to Chincoteague Bay from shore erosion, as part of his study of the origin, distribution and rates of accumulation of sediments in the bay. Based on Bartberger's estimates, shore erosion contributes approximately 40×10^3 m³/yr of sediment to Chincoteague Bay, approximately eight times the amount delivered by streams. Almost all of the eroded sediment comes from the mainland shore and bay islands, which consist largely of marsh. Bartberger assumed that shore-derived sediments consisted primarily of mud (silt plus clay fraction). Because the sand:mud ratio of sediments deposited on the bay floor was 1:1, he reasoned that an equal amount of sand was introduced into the bay from other sources, mainly from Assateague Island through overwash processes and wind deposits. Transport of sand through the active inlets, Ocean City Inlet and Chincoteague Inlet, is important only as a local source.

Later studies of coastal erosion in the region, including those by the National Oceanic and Atmospheric Administration (NOAA, 1988) and Leatherman (1983), were more limited in area, for example, to the vicinity of the Ocean City Inlet or the Atlantic shoreline of Maryland. Volonté and Leatherman (1992) predicted future wetlands and upland losses for the mainland (western) shores of Assawoman and Isle of Wight Bays and their main tributaries, including the St. Martin River. As part of that study, they measured linear rates of shoreline change along 41 miles of shoreline (at 215 sites located approximately 1000 ft apart) for the period 1850-1989. Their findings for several reaches of shoreline are relevant to this study (Table 2-1). Average rates of recession in the study area, by water body, range from -0.2 to -1.1 ft/yr (-0.6 to -0.34 cm/yr). Based on that study, Volonté and Leatherman concluded that marshy shorelines undergo the highest rates of erosion.

Recently, MGS remapped and assessed shoreline change in Maryland's coastal bays (Hennessee and Stott, 1999; Hennessee and others, 2002; Stott and others, 1999, 2000). The project involved digitizing historical and recent shoreline positions for the 450 mi (724 km) of shoreline defining the coastal bays. Using a geographic information system (GIS), MGS digitally updated nine 7.5-minute quadrangles covering the coastal bays and produced a corresponding series of *Shoreline Changes* maps. MGS also determined the area of land lost within the coastal bays since the mid-1800s. Between 1850 and 1989, Assawoman Bay lost a net of 948 acres (3.84 km²) to shoreline erosion, at an annual rate per mile of shoreline of 0.09

acres/mi/yr (226.3 m²/km/yr). Comparable figures for Isle of Wight Bay and the St. Martin River, respectively, are 159 acres (0.64 km²) at a rate of 0.03 acres/mi/yr (75.4 m²/km/yr) and 254 acres (1.03 km²) at a rate of 0.10 acres/mi/yr (251.5 m²/km/yr).

Table 2-1: Average rates of recession (ft/yr) for reaches ofshoreline in the study area, from Volonté and Leatherman (1992).						
Zone	Area	Linear rate of recession (ft/yr)				
1	Isle of Wight Bay	-1.0				
5	St. Martin River	-1.1				
6	Shingle Landing Prong	-0.2				
7	Bishopville Prong	-0.3				
8	Isle of Wight	-1.1				
9	Assawoman Bay	-0.5				

NUTRIENT BUDGET AND POLLUTANT LOADING STUDIES

In 1993, the Maryland Department of the Environment (MDE) conducted an assessment of Maryland's coastal bay aquatic ecosystem (UM and CESI, 1993). The authors reviewed existing data for trends in the overall quality of the bays' ecosystem. One objective was to assess terrestrial pollutant loadings. The study identified contributing sources and estimated pollutant loadings from point source discharges, surface runoff, and direct discharge of groundwater into the bays. Loadings from shoreline erosion were not considered. The pollutants included nitrogen, phosphorus, total suspended solids (TSS), metals (zinc and lead) and biochemical oxygen demand (BOD). Estimates of pollutant loadings from surface runoff were based on land use and land cover. The study identified the upper bays (Assawoman and Isle of Wight Bays) and, in particular, the St. Martin River as areas exhibiting serious water quality problems due, in part, to poor flushing, waterfront development, and high nutrient loadings. Estimated loading rates for all of the pollutants included in the assessment were very high for Turville and Herring Creeks and the St. Martin River, compared to those observed for the other coastal bays and selected portions of the Chesapeake Bay.

Impaired by nutrients (nitrogen and phosphorus), the St. Martin River was placed on Maryland's list of water-quality-limited segments in 1994. Two years later, Assawoman and Isle of Wight Bays were added to the list. As a result, the State was required, under Section 303(d) of the Federal Clean Water Act, to develop a total maximum daily load (TMDL) for these two bays. A TMDL reflects the total pollutant loading of an impairing substance that a water body can receive and still meet water quality standards. In the process of developing the TMDLs, MDE revised the nutrient loadings reported in the UM and CESI report (MDE, 2001). MDE recalculated nutrient loadings based on 1997 land use information and updated groundwater inputs based on data from a recent groundwater study (Dillow and others, 2002). Again, in developing a nutrient budget for the northern coastal bays, MDE omitted contributions from shoreline erosion.

In general, few published nutrient budgets have included input from shoreline erosion. One exception was a study conducted by Ibison and others (1990), who measured sediment and

nutrient contributions from eroding banks along tidal shorelines of the Virginia portion of the Chesapeake Bay and several of its major tributaries. The researchers selected 14 non-marsh sites that were undergoing high rates and volumes of erosion and that were located near living marine resources. For fastland bank samples, nitrogen concentrations ranged from 0.01 to 3.34 mg/g (0.001 to 0.334%); phosphorus concentrations ranged from 0.01 to 1.28 mg/g (0.001 to 0.128%). The authors compared their results with nutrient loadings from controllable non-point sources. Shoreline erosion contributed 5.2% of the nitrogen load and 23.6% of the phosphorus load. Differences in nutrient loadings among the sites were due to differences in bank heights and erosion rates; differences in nitrogen and phosphorus concentrations were not a significant factor.

Two years later, Ibison and others (1992) expanded their initial research to include an additional 44 eroding banks. They examined the relationship between nutrient concentrations and land use for four land use categories: active farms, fallow farms, wooded, and rural residential. And, they resolved a question that arose following the publication of their earlier report. Was the mineral apatite in fossiliferous soil horizons a possible source of error in their phosphorus measurements?

The researchers confirmed that nutrient concentrations and loading rates varied greatly from site to site. Nutrient loading rates from shoreline erosion exceeded those from agricultural runoff because of the large volumes of soil lost to shoreline erosion. Nutrient loading concentrations and land use were related. The highest mean total nitrogen and total phosphorus loading concentrations were associated with the cultivated croplands of active farms. Surprisingly, though, average total nitrogen loading concentrations were equally high for wooded land. For fossiliferous horizons, mean total phosphorus loading concentrations were about twice the mean for unfossiliferous banks. However, mean inorganic phosphorous loading concentrations were the same for both.

3. STUDY AREA

GEOMORPHOLOGY

The study area is located on the Atlantic coast of the Delmarva Peninsula (Fig. 3-1). Isle of Wight and Assawoman Bays are the two northernmost coastal bays in Maryland. Fenwick Island, part of the barrier island/southern spit unit of the Delmarva coastal compartment (Fisher, 1967), separates the two coastal bays from the Atlantic Ocean. The Town of Ocean City is located on Fenwick Island.

Assawoman Bay and Isle of Wight Bay, microtidal (<2 m tidal range) coastal lagoons, are contiguous with each other. For this discussion, the boundary between Assawoman Bay and Isle of Wight Bay is the Rt. 90 Bridge, which spans Fenwick Island (Ocean City at 60th Street) and Isle of Wight (Fig. 3-2). St. Martin River, which drains into Isle of Wight Bay, is the major tributary, accounting for 62 % of the total drainage area for the two bays (Bartberger and Biggs, 1970; UM and CESI, 1993). In addition to the St. Martin River, several smaller streams drain into the two bays. Roy Creek and Greys Creek drain into Assawoman Bay. Manklin Creek, Turville Creek, and Herring Creek drain into Isle of Wight Bay. Table 3-1 lists basic morphometric data for both bays and the St. Martin River.

Table 3-1. Morphometric data for Isle of Wight and Assawoman Bays and theSt. Martin River; area data compiled from UM and CESI (1993) and this study.Total shoreline includes islands and reaches of major tributaries: Grey, Herring,Manklin and Turville Creeks, as shown in Figure 3-2.							
	Assawoman BayIsle of Wight BaySt. Martin RiverNorthern Bay System						
Surface area	7 km ²	46.9 km^2					
Maximum length	7.9 km	6.7 km	5.9 km	14.5 km			
Drainage area 24.7 km^2 146.4 km^{2*} 106 km^2 171.1 km^2							
Total shoreline (1989) 152.5 km 125.2 km 84.8 km 401.7 km **							
 * Drainage area for Isle of Wight Bay includes that of the St. Martin River ** Northern Bay system shoreline includes Delaware portion of Assawoman Bay (39.2 km). 							

The two bays are connected to the Atlantic Ocean through a single outlet, Ocean City Inlet, located at the southern end of Isle of Wight Bay. Ocean City Inlet formed during a hurricane in 1933 and was immediately stabilized by jetties to keep it open. A canal, known as "The Ditch," connects Assawoman Bay to Little Assawoman Bay, in Delaware.

Historically, several other inlets have been documented along Fenwick Island (Truitt, 1968). These inlets, like Ocean City Inlet, also formed during storms. Eventually, they filled in as a result of natural processes. During the Ash Wednesday storm in March 1962, Fenwick Island was breached in the vicinity of 71st Street, and a 50-ft-wide channel was cut through to the bay

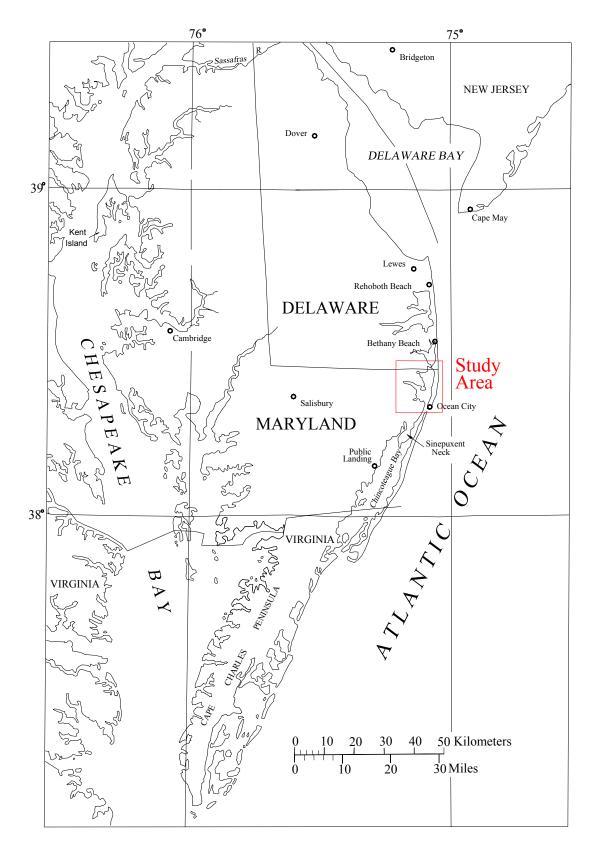


Figure 3-1. The Delmarva Peninsula, showing the location of the study area.

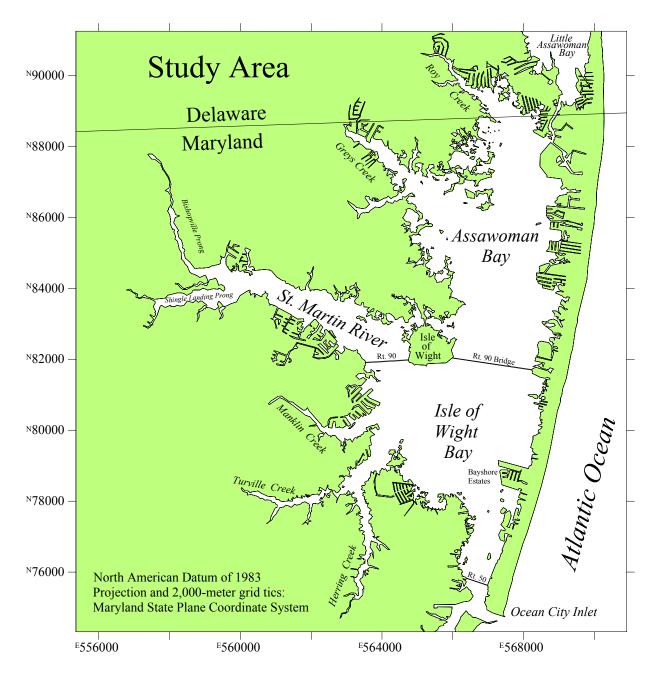
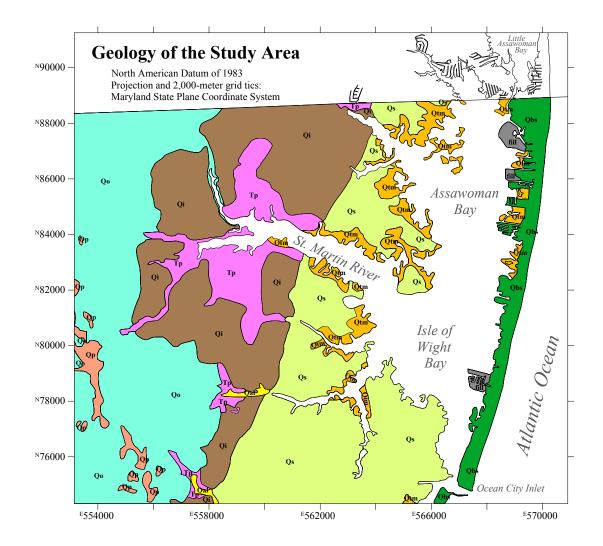


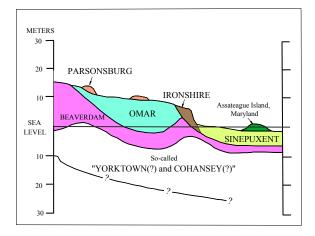
Figure 3-2. Study area.

(U.S. Army Corps of Engineers, 1962). The Army Corps of Engineers immediately filled in the inlet with sand dredged from Assawoman Bay.

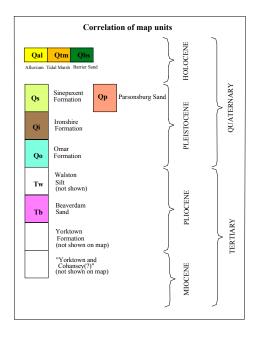
Circulation patterns and tidal ranges in the two bays depend on proximity to the Ocean City Inlet and wind conditions. Near the inlet, currents are affected primarily by tidal cycles. Current velocities near the inlet and within the federal navigation channel commonly exceed 200 cm/sec. The maximum tide range is approximately 0.6 meters (2 ft.) at the inlet and diminishes with distance from the inlet. Most of the tide attenuation occurs around 27th Street (Bayshore Estates), at which point Isle of Wight Bay widens dramatically. North of the Rt. 90 bridges (St. Martin River and Assawoman Bay), the mean tide range is relatively constant at 0.3 meters (1 ft) (Wells and Ortt, 2001). In St. Martin River and along the western and northern margins of Assawoman Bay, wind conditions can have a greater effect than tides on water levels and current velocities.

The shoreline bordering the bays is dominantly wetlands and marshes. Much of the bay side of Fenwick Island (Town of Ocean City, proper) has been developed at the expense of wetlands (Dolan and others, 1980). Large areas have been in-filled and built up, and more than 75% of the natural shoreline has been armored by bulkheads or rip-rap.


GEOLOGY


Unconsolidated Coastal Plain sediments, the upper 60 m of which are Cenozoic in age, underlie the study area. Sediments of the Sinepuxent Formation (Qs) are exposed along much of Maryland's coastal area from Bethany Beach, Delaware, southward to the Maryland-Virginia border (Fig. 3-3). The formation directly underlies Assawoman and Isle of Wight Bays and is exposed in several non-marsh areas along the mainland shore of both bays. However, Owens and Denny (1978) classified most of the shoreline marshes as Holocene (modern) deposits (Qtm). It is unclear why the marshes bordering southern Isle of Wight Bay were not distinguished from the underlying Sinepuxent Formation.

The Sinepuxent Formation is composed of dark colored, poorly sorted, silty fine-to-medium sand with thin beds of peaty sand and black clay. Heavy minerals are abundant and consist of both amphibole and pyroxene minerals. All of the major clay mineral groups – kaolinite, montmorillonite, illite, and chlorite – are represented. The sand consists of quartz, feldspar and an abundance of mica – muscovite, biotite, and chlorite. The preponderance of mica makes the Sinepuxent Formation lithologically distinct from underlying older units (Owens and Denny, 1979).


The Sinepuxent Formation, interpreted to be a marginal marine deposit, has been correlated with offshore Q2 deposits dating from 80,000 to 120,000 years before the present (Toscano, 1992; Toscano and others, 1989; Toscano and York, 1992).

The western edge of the Sinepuxent Formation abuts the Ironshire Formation (Qi). Consisting of pale yellow to white sand and gravelly sand, the Ironshire Formation is thought to be a barrier-back barrier sequence (Owens and Denny, 1978). Although the Ironshire Formation

Figure 3-3. Geology of the study area. The cross-section illustrates the general relationship of geologic formations (modified from Owens and Denny, 1978 1979).

sits unconformably above the Beaverdam Sand, at no point does it underlie the Sinepuxent Formation (Owens and Denny, 1979). Within the study area, the Ironshire Formation is exposed along the upstream area of Greys Creek.

The Sinepuxent is underlain by the Beaverdam Sand (Tb), which is Pliocene in age. The exposed portion of the Beaverdam Formation is characterized by extensively cross-stratified sand, interbedded with clay-silt laminae. Unweathered Beaverdam Sand sediments may be pale blue-green or white; weathered sediments are orange or reddish brown. Due to the abundance of silt, the Beaverdam Sand is more cohesive than the Ironshire Formation. Locally, the Beaverdam Sand is exposed along the upstream area of the St. Martin River (Fig. 3-3).

The Omar Formation (Qo), thought to be early Pleistocene in age, is exposed west of the Ironshire Formation and lies directly above the Beaverdam. Within the study area, the Omar Formation consists of interstratified light colored sand and dark colored sand-silt-clay or silty clay. It is exposed along the banks of the Bishopville Prong, one of the two main branches of the St. Martin River.

Bay Bottom Sediments

The average grain size distribution of bottom sediments in Assawoman and Isle of Wight Bays is 54% sand, 28% silt, and 18% clay (Wells and others, 1996; Wells and Conkwright, 1999). The sand to mud ratio is nearly 1:1, similar to Bartberger's (1976) findings for Chincoteague Bay. Bottom sediments include seven of Shepard's (1954) ten categories (see Fig. 4-2), although most of the samples are classified as Sand, Clayey-Silt, or Silty-Sand.

Bottom sediments tend to become coarser, that is, increase in grain size, from west to east (Fig. 3-4). Sandy sediments (i.e., sand > 75%) are found primarily along the eastern side of the bays. Clayey-Silts are found in the tributaries and in isolated pockets associated with marshy shorelines. Silty-Clays are restricted to upstream areas of tributaries. Silty-Sands, Sandy-Silts, and Sand-Silt-Clays are found in isolated pockets along marshy shorelines and along the boundaries between Sand and Clayey-Silts. The boundary areas represent zones of mixing between the coarser- and finer-grained end members of the sediment distribution. However, the transition between mud-dominated and sand-dominated areas is quite abrupt for most of the bays.

Sediment distributions reflect the energy of the environments, as well as proximity to sediment source. Sand found along the western side of the bays represents material carried across the barrier island, Fenwick Island, as washover or eolian deposits, or carried through the inlet. These areas are shallower and exposed to a relatively large fetch. The bottom in these areas is subject to higher energies from wind-generated waves. Fine-grained sediments are either not deposited or are actively winnowed from these higher energy areas. At the southern end of Isle of Wight Bay, large sand shoals have been deposited as part of the flood tidal delta associated with Ocean City Inlet. Based on vibracores collected from these shoals, Wells and Kerhin (1982) determined that the central flood tidal delta is about 4.2 m (14 ft) thick and contains medium-to-fine sand.

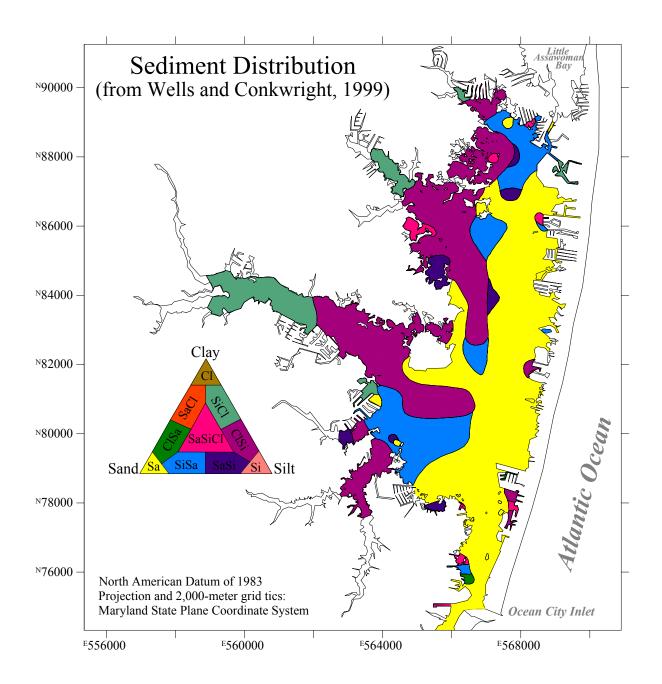


Figure 3-4. Distribution of bottom sediments, based on Shepard's (1954) classification.

The sand-dominated area around Isle of Wight is interpreted to be reworked sand from the exposed pre-transgression surface, which seismic data show outcropping in this area. This exposed surface is interpreted to represent the former footprint of a larger Isle of Wight.

Silty-Clays and Clayey-Silts are confined primarily to marsh areas and tributaries. Clayey-Silts are found in the lower reaches of tributaries and in lobes extending from the tributaries into the main bays (Fig. 3-4). Silty-Clays are found in the upper reaches of tributaries. The source of the fine-grained deposits is sediments transported by surface runoff or eroded directly from the shoreline. The finer-grained material eroded from shorelines is selectively removed, suspended, and deposited in areas where wave action is minimal – areas of limited fetch (e.g., protected marshy areas) and areas below wave base (e.g., deeper mid-channel areas).

4. METHODS

SELECTION OF SAMPLING SITES

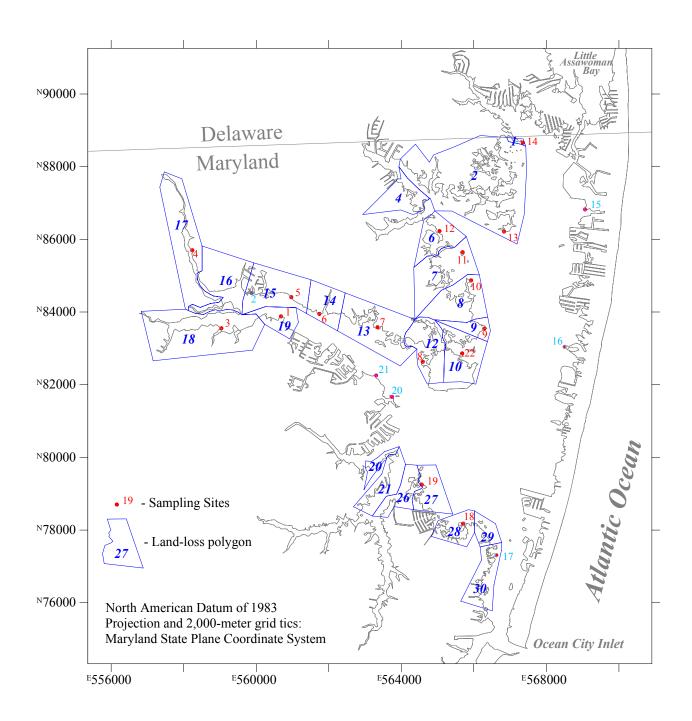
Sampling locations were selected primarily on the basis of historical shoreline retreat, geology, geomorphology, and marsh type. First, possible candidates were chosen by identifying unprotected reaches of shoreline that had experienced relatively high rates of erosion, as shown on *Shoreline Changes* maps of the area. Within those reaches, researchers selected 22 sites that represented:

- 1 the main water bodies in the study area,
- 2 the diverse geomorphology, namely marsh, bluff, and beach,
- 3 the various geological formations exposed along area shorelines, and
- 4 the different types of vegetation in marshes bordering the rivers and bays.

Target UTM coordinates of the 22 original sites were acquired from rectified digital aerial photography (Table 4-1). MGS then contacted property owners, identified from State Property Tax maps, to obtain permission to access the sites. Three of the original sites were eliminated because MGS was unable to obtain the owner's permission. Three more sites were eliminated because the shoreline had been altered (e.g., filled and/or armored). In the end, MGS sampled 16 sites as representative of eroding shoreline material – 13 marsh sites and 3 bluff/beach sites (Fig. 4-1). To assess the biotic component of nutrient input, the University of Maryland Center for Environmental Science (UMCES) collected samples at Sites 1, 14, and 19, located in the St. Martin River, Isle of Wight Bay, and Assawoman Bay, respectively. Results of the UMCES analyses are detailed in a separate report.

Table 4-1. Sampling sites. The sites that were eliminated are indicated by shading.					
Site	Name	Location	UTM coordi 83, m	· · · · · · · · · · · · · · · · · · ·	Comments
			Northing	Easting	
1	Hasty Point (or The Pocket)	<u>St. Martin R. – south shore</u> about 1 mi. downstream from confluence of Shingle Landing and Bishopville Prongs	4251063	486039	Marsh; Joint site, sampled by both MGS and UMCEES
2	Holiday Harbor	<u>St. Martin R. – north shore</u> at mouth of Bishopville Prong; upstream of Hasty Point	4251726	485220	Marsh; Eliminated, unable to obtain permission from landowner
3	Windmill Creek	<u>Shingle Landing Prong – south</u> <u>shore</u> : mouth of Windmill Creek	4250799	484364	Bluff/beach
4	Bishopville Prong	Bishopville Prong mid-way up stream	4252930	483615	Bluff/beach
5		<u>St. Martin R. – north shore</u> opposite Station 1 (Hasty Point)	4251580	486313	Bluff/beach
6	Peach Point	<u>St. Martin R. – north shore</u> mouth of Harry Creek	4251114	487056	Marsh

Site	Name	Location	UTM coordin 83, me	· ·	Com	Comments	
			Northing	Easting			
7	Salt Grass Point	<u>St. Martin R. – north shore</u> vicinity of Buck Island Pond and Buck Island Creek	4250713	488658	Marsh		
8	Smokehouse Cove	<u>St. Martin R. – north shore</u> NW of Isle of Wight	4249726	489906	Marsh		
9	Drum Point	<u>Assawoman Bay – west shore</u> easternmost extent of St. Martin Neck	4250598	491619	Marsh		
10	Tulls Island	<u>Assawoman Bay – west shore</u> unnamed point between Drum Point and Hills Island, immediately west of former Tulls Island	4251941	491252	Marsh		
11	Goose Pond	Assawoman Bay – west shore	4252708	491080	Marsh		
12	Peeks Creek	<u>Assawoman Bay – west shore</u> or <u>Greys Creek – south shore</u> shoreline between Peeks Creek and Back Creek; SE of confluence of Greys Creek and Back Creek	4253294	490442	Marsh		
		Assawoman Bay – west shore SE side of South Hammocks; ~	4253246	492193	Core 13	Marsh	
13*	South Hammocks	due north of Drum Point ~1.75 mi.	4253251	492200	Core 13B (second core taken)		
		<u>Assawoman Bay – west shore</u> northern extent of study area in	4255752	492582	Core 14	Marsh; Joint site sampled	
14*	Lone Cedar Point	MD	4255727	492780	Core 14B (second core taken)	by both MGS an UMCES	
15	Caine Keys	Assawoman Bay – east shore ~ opposite South Hammocks	4253790	494430	Marsh; E not natura shoreline	al	
16	Swan Point	Assawoman Bay – east shore ~1 mi. N of Rt. 90 Bridge; ~ opposite Drum Point	4250065	493830	Marsh; Eliminated, unable to obtain permission from landowner		
17	Bay Shore Acres	Isle of Wight Bay – west shore immediately nw of Horn Island; ~0.5 mi. N of Rt. 50 bridge	4244389	491773	landowner Marsh; Eliminated, unable to obtain permission from landowner		


Table 4	Table 4-1. Sampling sites. The sites that were eliminated are indicated by shading.					
Site	Name	Location	UTM coordi 83, m	· · · · · · · · · · · · · · · · · · ·	Comments	
			Northing	Easting		
18	Wire Pond	$\frac{\text{Isle of Wight Bay} - \text{southwest}}{\text{shore} - 1^{\text{st}} \text{ cove west of The}}$ Thorofare	4245252	490931	Marsh	
19*	Keyser Point	Isle of Wight Bay – west shore confluence of Turville Creek (south shore) and Isle of Wight Bay	4246364	489794	Marsh; Joint site, sampled by both MGS and UMCES	
20	Jenkins Point	Isle of Wight Bay – west shore confluence of St. Martin River (south shore) and Isle of Wight Bay			Eliminated – shoreline altered	
21	Margot's Island	<u>St. Martin River – south shore</u> between Jenkins Point and Shell Gut Point; ~ opposite Saltgrass Point			Eliminated – shoreline altered	
22	Isle of Wight	<u>Assawoman Bay – west shore</u> NE shore of Isle of Wight	4249932	490966	Marsh	

FIELD METHODS

Sediment Sampling

Field teams accessed all sampling sites by boat. Once on site, they recorded actual UTM coordinates using a hand held differential GPS unit, briefly described the site, and took photographs. Depending on the nature of the site (i.e., marsh, beach, or bluff), different methods were used to collect sediments for *in situ* bulk density determinations and for chemical and textural analyses.

At bluff sites, several samples were collected from the bluff face, the beach, and offshore along a profile line perpendicular to the shore. Before collecting bluff samples, field personnel cut a shallow, vertical trench into the bluff face to expose an unweathered surface. Sediment samples were collected from each visually distinctive sediment layer by inserting a short length (15 to 25 cm) of clear, cellulose acetate butyrate (CAB) plastic tube (6.7 cm diameter) horizontally into the bluff face. The tube was dug out of the bluff face, and its ends were trimmed in such a way that the inside of the tube was completely filled with sediment (no gaps). Sample tubes were capped and labeled. Grab samples collected on the beach and offshore were placed in Whirl-pak bags. Bluff height and the elevations of sediment horizons and sample locations along the bluff/beach profile were determined using a level and a stadia rod.

Figure 4-1. Locations of sampling sites (in red) and land loss polygons (in blue). The sampling sites with light blue numbers were eliminated from the study because the shoreline at the site was altered or researchers could not obtain the owner's permission to access the site.

At marsh sites, a continuous sediment core was collected on a prominent neck or point of the marsh, approximately 1 m from the water's edge. The length of core needed at each site was determined by averaging several bank height measurements. Bank height was defined as the distance between the top of the marsh and the base of the erosional scarp at the marsh edge. The base of the scarp was usually underwater. Marsh cores were collected by vibrating or pounding 7.62 cm-diameter aluminum tubing into the marsh surface down to the desired depth. Sediment compaction was measured and recorded before the core was extracted. Following extraction, the liner was trimmed to the top of the sediment and sealed at both ends for transportation back to the lab. There, it was kept refrigerated until it was processed. A grab sample was collected approximately 0.3 m offshore adjacent to the core location.

LABORATORY METHODS

Quantifying Land Loss

The amount of land lost annually in the study area is based on a digital comparison of two historical shorelines, one dating from 1942 and the other from 1989. The 1942 shoreline was previously digitized from 1:20,000-scale National Oceanic and Atmospheric Administration (NOAA) coastal survey maps, also known as topographic (T-) sheets. The 1989 shoreline was previously interpreted from 1:12,000-scale orthophotography. At the time it was delineated, the 1989 shoreline was also classified by shoreline type (i.e., beach, structure, vegetated, or water's edge) (Hennessee, 2001). MGS used a geographic information system (GIS), MicroImages' TNTmips, to compare shoreline positions and quantify losses due to erosion.

Different stretches of shoreline erode at different rates. To account for this variability, MGS divided the study area shoreline into 23 segments. Shoreline reaches ranged in length from about 600 m to 45,000 m; most were less than 9,000 m long. To demarcate the reaches, MGS constructed a template of irregular, mostly contiguous, "land loss" polygons. The polygons were drawn in such a way that:

- They contained all unprotected shoreline in the study area, except for the following, unsampled tributaries: the head of Greys Creek; Back Creek; the upstream reaches of Manklin Creek; and Turville and Herring Creeks above their confluence.
- They excluded protected shoreline: the western side of Fenwick Island (eastern Assawoman and Isle of Wight Bays); the southern end of Isle of Wight; the south shore of the St. Martin River bordering the community of Ocean Pines; the north shore of Manklin Creek; and a short stretch of shoreline in the vicinity of Octopus Pond.
- With the exceptions listed above, as well as a short reach of shoreline in the vicinity of Saltgrass Pt., they initially included the 1942 and 1989 shorelines in their entirety. (Only one shoreline was available for Saltgrass Pt.)
- Based on researchers' field experience and an inspection of 1989 digital orthophotography, each contained, as far as practicable, similar types of shoreline (i.e., marsh or upland).

- In areas of changing geology, their boundaries coincided with the contacts between geologic formations. For instance, the cross-shore boundaries of polygon P16 at the mouth of Bishopville Prong coincided with an outcrop of the Beaverdam Sand.
- In the vicinity of a bay or tributary mouth, polygon boundaries coincided with the mouth (e.g., polygons P8 and P12), to allow researchers to report their results by water body.
- In the absence of any of the above criteria, polygon boundaries were drawn equidistant between sample locations (e.g., polygons P6 through P10). No polygon included more than one sampling site.

Each land loss polygon in the template was assigned a number, P#. The polygons are shown in Figure 4-1, and a description of their locations is presented in Table 4-2.

Table 4-2. Land loss polygons and associated sampling sites						
Land loss polygon	Location	Geology*	Associated sampling site			
P1	Assawoman Bay Lone Cedar Pt.	(P & S) – Holocene Tidal Marsh Deposits (Qtm)	14B			
P2	Assawoman Bay Marsh south of Lone Cedar Pt., along western shore of Assawoman Bay and northern shore of Greys Cr., including Corn Hammocks, South Hammocks, and Swan Gut	 (P) – Mostly Qtm, except Middle-Wisconsin Sinepuxent Fm. (Qs) upstream of Swan Gut; polygon boundary drawn at contact between Qs and Upper Sangamon Ironshire Fm. (Qi) (S) – Qtm 	13B			
P4	<u>Greys Creek</u> Southern shore of Grays Cr. upstream of Back Cr.	 (P) – Mostly Qtm, except some Qs; polygon boundary drawn at contact between Qs and Qi (S) – No sample in polygon 	12			
Р6	<u>Assawoman Bay</u> Western shore of Assawoman Bay (or southern shore of Greys Cr.) from Back Cr. to Peeks Cr.	(P & S) – Qtm	12			
P7	<u>Assawoman Bay</u> Northern Goose Pond	(P) – Mostly Qtm, except some Qs (S) – Qtm	11			
P8	<u>Assawoman Bay</u> Southern Goose Pond; Tulls Island to Drum Pt.	(P & S) – Qtm	10			
Р9	<u>Assawoman Bay</u> Drum Pt.	(P) – Equally Qs and Qtm (S) – Qtm	9			

Table 4-2. Land loss polygons and associated sampling sites				
Land loss polygon	Location	Geology*	Associated sampling site	
P10	<u>Assawoman Bay</u> Drum Pt. to Wight Pt.	(P & S) – Qtm	22	
P12	<u>St. Martin River</u> West side of Isle of Wight, north of Rt. 90 bridge, and Smokehouse Cove	 (P) – Qtm, except for some Qs on southwest side of Isle of Wight (S) – Qtm 	8	
P13	<u>St. Martin River</u> Northern shore of St. Martin R. from Smokehouse Cove west past Saltgrass Pt. to vicinity of mouth of Buck Island Cr.; includes Buck Island Pond and Buck Island Cr.	(P & S) – Qtm	7	
P14	<u>St. Martin River</u> Northern shore of St. Martin R. in vicinity of Peach Pt. and mouth of Harry Cr.	(P & S) – Qtm	6	
P15	<u>St. Martin River</u> Northern shore of St. Martin R. in vicinity of Woods Pt. at mouth of Zippy Cr.	(P & S) – Pliocene Beaverdam Fm. (Tb)	5	
P16	Bishopville Prong Both shores of Bishopville Prong from mouth of prong north to contact between Beaverdam Sand and Ironshire Fm.	(P) – Tb (S) – No sample in polygon	5	
P17	Bishopville Prong Both shores of Bishopville Prong bordered by Ironshire Fm.	(P & S) – Lower Sangamon Omar Fm. (Qo)	4	
P18	Shingle Landing Prong Both shores of Shingle Landing Prong, from mouth upstream past confluence of Birch Br., Middle Br., and Church Br.	(P & S) – Tb	3	

Table 4-2	Land loss polygons and ass	ociated sampling sites		
Land loss polygon	Location	Geology*	Associated sampling site	
porygon	St. Martin River	(P) – Mostly Qtm, except	site	
	Southern shore of St.	some Tb		
P19	Martin R. from mouth of Shingle Landing Prong east past Hasty Pt. to first canal	(S) – Qtm	1	
	Manklin Creek	(P) – Mostly Qs, except some		
P20	Southern shore of Manklin Cr. immediately upstream of mouth	Qtm (S) – No sample in polygon	8	
P21	<u>Turville Creek</u> Northern shore of Turville Cr. from mouth of Herring	(P) – Equally Qs and Qtm(S) – No sample in polygon	8	
	Cr. to Mocassin Pond	(D) Martin Or area at a sure		
P26	<u>Turville Creek</u> Southern shore of Turville Cr. from mouth of Herring Cr. to Keyser Pt.	 (P) – Mostly Qs, except some Qtm (S) – No sample in polygon 	19	
	Isle of Wight Bay	(P & S) – Qs		
P27	Keyser Pt. to Octopus Pond		19	
	Isle of Wight Bay	(P & S) – Qs		
P28	Wire Pond and undeveloped (eastern) section of Octopus Pond		18	
P29	Isle of Wight Bay The Thorofare, from Drum Island to the start of the marsh bordering Wire Pond	(P) – Qs (S) – No sample in polygon	18	
P30	Isle of Wight Bay Rt. 50 bridge to Drum Island	(P) – Qs (S) – No sample in polygon	18	
* within p	oolygon (P) and at sampling si	ite (S)		

Once it was constructed, the polygon template was merged first with the 1942 shoreline and then with the 1989 shoreline. Both shoreline/template files were edited:

- Long stretches of developed shorelines were erased.
- Small gaps in the remaining shoreline were closed, usually by drawing short, straight lines between the dangling shoreline segments.
- Man-made features, usually canals, present in one year but not the other, were deleted. (In some cases, the headward reach of a small tributary extended further upstream in one

year than in another. Likewise, some ponds and coves, particularly in or along marshes, were evident in only one coverage. These features were left unaltered.)

Within each of the land loss polygons, interior polygons were assigned one of the following attributes: "fastland," "island," or "water."

For each land loss polygon, the areas (m^2) covered by fastland, island and water were recorded, by year, in an Excel spreadsheet. Likewise, the total length (m) of the 1989 shoreline, as well as the length of each type of shoreline (beach, structure, vegetated, water's edge) was recorded. For each polygon, land loss over the 47-year period was determined by subtracting water area in 1989 from water area in 1942. The difference in water area is equivalent to the area of land lost by erosion. A summary of area and shoreline changes for each polygon is presented in Table D-1 (Appendix D).

The land loss polygons provided a structure for organizing the results of the sediment, pore water, and plant tissue analyses. Each sample location was associated with one or more of the land loss polygons (Table 4-2). In the simplest case, where polygons and samples were colocated, the association is direct. For instance, the results for Site 13, located within polygon P12, are associated with polygon P12. For unsampled polygons, the association was based either on similarity in geology or shoreline type (marsh or upland), or on proximity.

Bank Height

At each sampling location, including one at which no sample was collected (Site 17 in polygon P29), bank height measurements (m) were taken at several places and averaged for the site. The mean heights were assigned to the associated land loss polygon(s), except as follows. The banks measured at Sites 3 and 5 were not representative of bank heights along the length of shoreline included in the associated land loss polygons. Much of the shoreline in those polygons borders low-lying marsh. So, for polygons P15, P16, and P18, researchers classified the 1989 digital shoreline as marsh, bank, or protected, based on their field experience and a visual inspection of the associated digital orthophotography. For each of the three land loss polygons, a weighted average bank height was calculated by multiplying the length of marsh shoreline by 0.5 m and the length of bank shoreline by the bank height at the associated sampling site, then dividing the sum of those two numbers by the length of unprotected shoreline (Table 4-3).

Table 4-3 P18.	6. Mean ba	nk heights	(m) calculate	ed for land loss	polygons	P15, P16	, and
Polygon	Marsh length (m)	Bank length (m)	Protected length (m)	Unprotected length (m)	Marsh height (m)	Bank height (m)	Mean bank height (m)
P15	1,948.66	2,263.92	1,412.05	4,212.58	0.50	2.12	1.4
P16	3,286.39	3,723.21	561.99	7,009.60	0.50	2.12	1.4
P18	4,588.49	7,807.85	0.00	12,396.34	0.50	2.79	1.9

Sediments

Core Processing

Before opening the cores, MGS x-rayed them in their liners using a TORR-MED medical Xray unit. The exposure settings were 84 to 90 kilovolts for 6 to 8 seconds at 5 milliAmps. Radiographic images were developed using a Xerox 125 xeroradiograph processor.

After x-raying was completed, each core was cut in half lengthwise. First, the aluminum liner was cut using a circular saw. The sediment core within the liner was then cut in half with a very sharp, stainless steel knife. The knife produced a clean cut through the plant roots and peat material, minimizing deformation of the core structure or shape. Lab personnel photographed and described the split core, noting changes in sediment and structure with depth. Xeroradiographs (x-rays), photographs and core logs are presented in Appendix A. The core was divided into sections 10 to 25 cm long. The exact length depended on lithological changes observed in the split core and in the radiographs. Each section was split lengthwise into three or four subsamples, which were designated for specific analyses (i.e., bulk density, grain size, or chemical analyses). The sub-samples were placed in Whirl-Pak bags. Bulk density splits were processed first, before other splits were made (see next section).

Bulk Density and Water Content

For both bluff samples and cored marsh sediments, MGS used similar methods to determine bulk density and water content. Grab samples collected from the beach and nearshore were processed for water content only.

Bluff Samples

The entire sediment sample was removed from the plastic core tube and weighed. The length of the tube was recorded. The sample was then mixed to homogenize it. Exactly ¹/₄ of the sample, by weight, was placed in a drying vessel, dried at 60°C, and then reweighed. The dried sample was saved for chemical analyses. The remaining ³/₄ of the sample was saved for grain size analysis.

Water content was calculated as the percentage of water weight to the total weight of wet sediment, as follows:

%
$$H 2O = \left(\frac{W_w}{W_t}\right) * 100$$
 Eq. 4-1

where: W_w is the weight (g) of water, and W_t is the weight (g) of wet sediment.

Wet and dry bulk densities (referred to in this study as "measured" bulk density, in g/cm^3 or Kg/m³) were calculated as the wet weight or dried weight (g), respectively, of the subsample

divided by 1/4 of the volume of the entire bluff sample. Volume was calculated using the volume formula for a cylinder:

$$V = \pi r^2 l \qquad \text{Eq. 4-2}$$

where:	V	is the volume (cm ³) of the subsample,
	π	is 3.14159,
	r	is the radius of the circumference of the CAB tube liner, or $\frac{1}{2}$ the diameter (6.7 cm), and
	l	is the length (cm) of the core tube.

A second method was used to calculate bulk density (wet) using the water content of the sediment (Bennett and Lambert, 1971). This method assumes that average sediment grain density is 2.72 g/cm^3 and that the sample is fully saturated with water.

$$\rho_{(B \& L)} = \frac{W_t}{\frac{W_d}{2.72} + W_w}$$
 Eq. 4-3

where:

 W_t

 W_w

 $\rho(B \& L)$ is the calculated bulk density, based on Bennett and Lambert, is the weight (g) of wet sediment, is the weight (g) of dry sediment, and W_d is the weight (g) of water.

Cored Marsh Samples

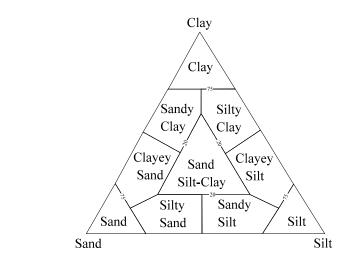
Each section of core was weighed to determine the total weight of the section. Exactly $\frac{1}{2}$ of the section, by weight, was place in a drying vessel, dried at 60°C, and then reweighed. The dried sample was archived.

Water content and calculated wet bulk density, based on Bennett and Lambert, were calculated using Equations 4-1 and 4-3, respectively. Measured bulk densities were calculated as the wet and dried weights (g) of the subsample divided by $\frac{1}{2}$ of the volume of the core section. The volume of the core section was calculated using Equation 4-2, where $r = \frac{1}{2}$ the diameter of the aluminum tubing (7.62 cm diameter) and l = section length.

Dry bulk density of the core section was adjusted to account for any core compaction. For most of the cores, there was some compaction (compression) of the sediments during the insertion of the core liner. The amount of compaction was measured as the difference between the top of the marsh and the top of the sediment in the core liner once the liner was emplaced. The degree of compaction along the length of the core varied depending on sediment texture. However, for this study, MGS assumed that compaction was evenly distributed over the length of the core. Bulk densities were multiplied by a compaction correction calculated as:

$$C(c) = 1 - \left(\frac{l(s) - l(t)}{l(s)}\right)$$
 Eq. 4-4

where,	$C_{(c)}$	is the compaction correction,
	$l_{(s)}$	is the length or depth (cm) of the sediment column cored or
		sampled, and
	$l_{(t)}$	is the length (cm) of the sediment core collected.


Grain Size Analysis

In preparation for grain size analysis, sediment samples underwent a cleaning process to remove soluble salts, carbonates, and organic matter. These constituents may interfere with the dispersal of individual sediment particles and, thereby, affect the subsequent separation of the sand and mud fractions. All sediment samples were treated first with a 10% solution of hydrochloric acid (HCl) to remove carbonate material, such as shells, and then with a 6% or 15% solution of hydrogen peroxide (H_2O_2) to remove organic material. A 0.26% solution of the dispersant sodium hexametaphosphate ((NaPO₃)₆) was then added to ensure that individual grains did not clump, or flocculate, during pipette analysis.

Marsh samples, which contained significant amounts of plant material, were wet-sieved through a 14-mesh (~1.4 mm) nylon screen to remove large plant roots and debris. The plant material was dried and weighed. Usually, plant matter was separated from sediments after the HCl treatment. However, for cores collected at sites sampled jointly by MGS and UMCES, samples were sieved prior to HCl treatment, and the plant fractions (> 1.4 mm) were saved for chemical analysis.

For each sample, the sand fraction was separated from the mud fraction by wet-sieving through a 4-phi mesh sieve (0.0625 mm, U.S. Standard Sieve #230). The sand fraction (i.e., particles > 0.0625 mm) was dried and weighed. The mud fraction (i.e., sediment passing through the #230 sieve) was analyzed using a pipette technique to determine the proportions of silt and clay (Krumbein and Pettijohn, 1938). The mud fraction was suspended in a 1000-ml cylinder in a solution of 0.26% sodium hexametaphosphate. The suspension was agitated and, at specified times thereafter, 20 ml pipette withdrawals were made. The rationale behind this process is that larger particles settle faster than smaller ones. By calculating the settling velocities of different sized particles, withdrawal times can be determined. At the time of withdrawal, all particles larger than a specified size have settled past the point of withdrawal. Sampling times were

calculated to permit the determination of the total amount of silt and clay (4 phi) and clay-sized (8 phi) particles in the suspension. Withdrawn samples were dried at 60°C and weighed. From these dry weights, the percentages of sand, silt, and clay were calculated for each sample and classified according to Shepard's (1954) nomenclature (Fig. 4-2).

Figure 4-2. Shepard's (1954) classification of sediment types.

Chemical Analysis

Sample Preparation

Before marsh samples were dried and ground, they were processed using a commercially available food blender and plastic (styrene copolymer) processor containers. Between 50 to 100 g of wet core sample, roots and all, were mixed with 50 to 100 ml of ultra-pure water. The slurry was processed at hi/liquefy for 1 minute or until no visible pieces of plant material remained. The processed slurry was then transferred to an evaporating dish and dried at 60°C.

The dried marsh samples and the bluff samples dried for bulk density/water content determinations were ground in tungsten-carbide vials using a ball mill, placed in Whirl-Pak bags, and stored in a desiccator.

Total Carbon and Nitrogen Analysis

Untreated, ground sediments were analyzed for total nitrogen, carbon, and sulfur (NCS) using a Carlo Erba NA1500 analyzer. Approximately 10 to 15 mg of dried sediment were weighed into a tin capsule. The exact weight of the sample, to the nearest μ g, was recorded. To ensure complete combustion during analysis, 15 to 20 mg of vanadium pentoxide (V₂O₅) were added to the tin capsule and mixed with the sediment. The capsule was then crimped to seal and stored until analysis.

The encapsulated sediment sample was dropped into a combustion chamber, where the sample was oxidized in pure oxygen. The resulting combustion gases (N, C, H, and S), along with pure helium, the carrier gas, were passed through a reduction furnace to remove free oxygen and then through a sorption trap to remove water. Separation of the gas components was achieved by passing the gas mixture through a chromatographic column. A thermal conductivity detector was used to measure the relative concentrations of the gases.

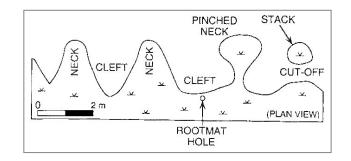
The NA1500 Analyzer was configured for NCS analysis using the manufacturer's recommended settings. As a primary standard, 5-chloro- 4-hydroxy- 3-methoxybenzylisothiourea phosphate was used. Blanks (tin capsules containing only vanadium pentoxide) were run every 12 samples. Replicates of every fifth sample were run. As secondary standards, at least one standard reference material (SRM) (NIST SRM #1646 – Estuarine Sediment; NIST SRM #2704 – Buffalo River Sediment, or the National Research Council of Canada PACS-1 – Marine Sediment) was run every six or seven samples. Comparisons of the results of the SRMs to the certified values are presented in the discussion of quality assurance and quality control (Appendix C).

Total Phosphorus and Metals

Activation Laboratories, Ltd. (Actlabs) of Tucson, Ariz., analyzed bluff and marsh sediments for 22 elements including total phosphorus. The lab used a four-acid, "near total" digestion process, followed by analysis of the digestate by inductively coupled plasma emission spectroscopy (ICP-OES). The four-acid digestion employed perchloric (HClO₄), hydrochloric (HCl), nitric (HNO₃), and hydrofluoric (HF) acids. Quality assurance was checked using the method of bracketing standards (Van Loon, 1980). The SRMs, similar to the sediments being analyzed, included the same standards used in the total nitrogen, carbon, and sulfur analyses. Actlabs' results of the analyses of the SRMs are listed in Appendix B. Analytical results for the bluff and marsh core samples are listed in Appendix C.

DATA REDUCTION

Average concentrations of nutrients (total carbon, nitrogen, and phosphorus), specific metals (Pb and Zn), and textural components (total solids, sand, silt, clay) were calculated for each core or bank/bluff site by averaging the concentrations of the individual core samples or bluff samples, normalized to bank height. Mean site concentrations were then assigned to specific land loss polygons (see Table 4-2) to calculate the component loadings for the polygons. Equations for the data reductions, along with detailed explanations and calculation tables, are presented in Appendix D.


5. RESULTS AND DISCUSSION

FIELD AND LAB OBSERVATIONS

Within the study area, sediment samples were collected from three basic types of shorelines: marsh, bluff and beach. Sites 3, 4, and 5, in the upstream area of the St. Martin River, are located along shorelines dominated by low bluffs, 2 to 3 m high, fronted by a narrow (6 to 9 m wide), sandy beach (Fig. 5-1). Both the Omar Formation (Site 5) and the Beaverdam Formation (Sites 3 and 5) are exposed along this portion of the river (Fig. 3.3). The bluff sediments consist of predominately grayish yellow to brownish gray sands with some mud. The lower half of the bluff at Site 3 consists of greenish blue sandy mud, which is more resistant to erosion. As a result, the bluff at Site 3 has a 40% slope. The bluffs at Sites 4 and 5 are steeper, with slopes greater than 60%.

Figure 5-1. Bluff at Site 5.

Figure 5-2. The main features developed along a marsh shoreline due to wave erosion (from Schwimmer, 2001).

The remaining sites are located on prominent points along marshy shorelines composed of either Holocene tidal marsh deposits or Sinepuxent deposits (Fig. 3-3). Most marsh shorelines are highly convoluted and edged by a 0.3 to 0.7 m erosional scarp, which is often undercut beneath the root mat layer. Features observed along the marsh shoreline include neck and cleft, pinched necks, stacks and isolated islands (Fig. 5-2), all of which are indicative of wave attack, a significant erosional process operating in the coastal bays (Schwimmer, 2001).

Pocket beaches (Fig. 5-3), the lengths of which range from 10 m to more than 50 m, are common along the marsh shoreline, particularly on the mainland side of Assawoman Bay. Pocket beaches may reflect a localized sand source (e.g., sandy facies in the underlying Sinepuxent Formation), nearshore sediment transport processes, or a combination of both. Most marsh sites characterized by sandy sediments are located near eroding headlands, a potential source of sand. In Rehoboth Bay, Delaware, Schwimmer (2001) observed that sandy beaches occur where eroding shoreline intersects upland areas. Subtle variations in lithologies at marsh sites may be related to antecedent topography, as well as to local sediment transport processes.

The dominant marsh vegetation is *Spartina alterniflora*. At many sites, the marsh surface and scarp are armored with live mussels (*Modiolus sp*) (Fig. 5-4).

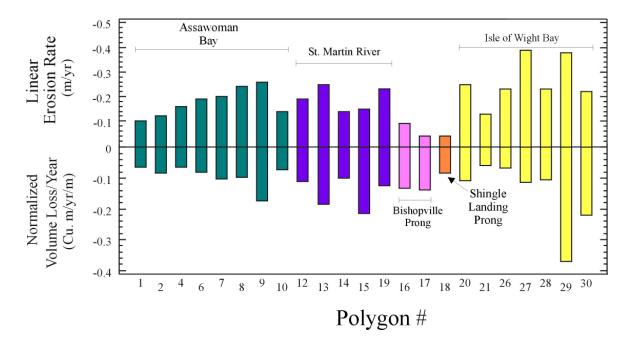
Based on an examination of the marsh cores, sediment characteristics vary not only from site to site, but both vertically and laterally across a given site. Marsh sediments are predominately fine-grained muds with abundant plant material and organic matter (peat). Bulk organic content ranges from less than 5% (dry weight) to 71%. Sand content decreases with depth at most sites. Active (live) root zones range from depths of 20 cm (Site 13) to 50 cm (Site 10) below the marsh surface. In many cores, a redox boundary is evident just below the active root zone. Also, a 10 to 20 cm thick layer containing very high peat or plant material content with little sediment occurs at or below the active root zone. This "spongy" layer accounts for most of the compaction that occurs during the collection of cores and the "quaking" of the marsh surface felt when large waves hit the shoreline or when walking.

Figure 5-3. Pocket beach. This sandy beach is one of several found at Site 14 (Lone Cedar Point). A short core collected from this beach revealed a layer of sand overlying marsh mud.

Figure 5-4. Mussels armoring scarp face at Site 1.

LAND LOSS (AREA AND VOLUME)

For the 47-year period between 1942 and 1989, Table 5-1 shows land lost and rates of erosion for the northern coastal bays. Overall, the 166 km of shoreline lost about $-1.2 \times 10^6 \text{ m}^2$ of land to erosion. On average, the shoreline retreated a total of -7.3 m, at an annual rate of -16 cm/yr. Rates of loss varied widely (Fig. 5-5). The protected shorelines of Bishopville Prong (P17) and Shingle Landing Prong (P18), tributaries of the St. Martin River, experienced minimal erosion, -4 cm/yr. Rates reached a maximum of -39 cm/yr along the exposed western shore of Isle of Wight Bay (P27). These annual erosion rates are similar to those measured along marsh shorelines in Rehoboth Bay, Delaware, where, over a three year period, rates averaged between -14 to -43 cm/yr (Schwimmer, 2001).


Considering the three main bodies of water, overall erosion rates were highest along the shores of Isle of Wight Bay (-24 cm/yr) and lowest along the St. Martin River (-13 cm/yr), with Assawoman Bay in between (-15 cm/yr).

In addition to the loss of land area, shoreline erosion typically involves a vertical component, that is, the retreat of a bank of bluff. The volume of sediment lost depends on the height of the eroding bank. Table 5-1 also shows volumetric losses, the result of multiplying the change in a polygon's land area (See Appendix D, Table D-1) by the associated bank height. The calculation assumes uniform bank height throughout the polygon and vertical, as opposed to sloping, banks. Except for Bishopville and Shingle Landing Prongs, bank heights in the study area are less than 1 m in elevation.

Table 5-1. Volume (m^3) and rate of land lost during the 47-year period between 1942 and 1989 and linear rates (m/yr) of shoreline erosion, by basin. Negative numbers indicate erosion.

Basin	1989 shoreline length (m)	Rate of shoreline change (m/yr)	Change in land area (m ²)	Mean bank height (m)	Volume loss for period (m ³)	Rate of volume loss (m ³ /yr)
Assawoman						
Bay	81,164	-0.15	-573,150	0.52	316,356	-6,731
St. Martin						
River	59,378	-0.13	-361,877	1.29	362,426	-7,711
Isle of Wight						
Bay	25,296	-0.24	-280,630	0.54	143,007	-3,043
Total	165,838		-1,215,657		821,789	-17,485
Average		-0.16		0.79		

Over the course of the 47 years, the total volume of sediment lost to shoreline erosion amounted to -822×10^3 m³. Annually, that translates to -17.5×10^3 m³/yr. Volumetric losses are greatest in the St. Martin River (-7.7 x 10^3 m³/yr), due in part to relatively high bank elevations along Bishopville and Shingle Landing Prongs. Annual volumetric losses in Assawoman Bay are nearly as high (-6.7 x 10^3 m³/yr), whereas, those in Isle of Wight Bay are considerably lower (-3.0 x 10^3 m³/yr). Factoring in bank height changes the rank ordering of the three water bodies in terms of losses. Based on linear rates of change, Isle of Wight Bay is the biggest loser. Based on volumetric loss, the St. Martin River is (Fig. 5-5). Depending on one's perspective, one measure may be more useful than the other. Waterfront property owners, for example, may be most concerned about how rapidly the shoreline is approaching their homes. Coastal zone managers, attempting to control turbidity, may be more interested in volumetric losses.

Figure 5-5. Comparison of linear erosion rate and volumetric loss for each land loss polygon. To normalize differences in polygon area, volume loss for each polygon is divided by shoreline length within the polygon; losses are given as volume (m³) per year per linear meter of shoreline.

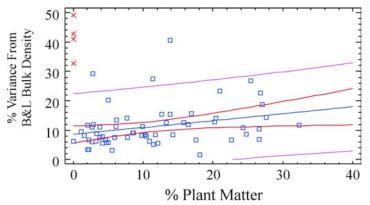
SEDIMENTS

Bulk Density

One of the most important parameters measured in this study is bulk density, a determination of the total solids in a volume of sediment. Bulk density is used to convert the volume of land lost to mass loadings. Bulk density is calculated by two different methods. First, it is measured directly. A known volume of sediment is weighed and assumed to reflect the *in situ* density of shoreline sediments, accounting for all air pockets, clastics, plant material, etc. Second, bulk density is calculated as a function of water content (Bennett and Lambert, 1971). Results of both methods, reported in Appendix C, are discussed below. The emphasis is on <u>measured dry bulk density</u>, the number used in the mass loading calculations.

The measured dry bulk density of sediments ranges from 0.12 to 1.54 g/cm³. Higher bulk densities (i.e., >1.25 g/cm³) are associated with sediments sampled from bluff sites (Sites 3, 4, and 5). These sediments consist almost entirely of sand and contain little plant material or organic matter. The average dry bulk density of bluff sediments is 1.39 ± 0.13 g/cm³, which is slightly lower than the average bulk density of 1.5 g/cm³ used by Ibison and others (1990, 1992).

The measured dry bulk density of marsh sediments ranges from 0.12 to 1.03 g/cm³, averaging 0.43 ± 0.28 g/cm³. This range is within the range of values observed in marsh sediments in the Chesapeake Bay (Anderson and others, 1997; Stevenson and others, 1985). Higher bulk densities correspond to the sandy sediments found at the tops of cores. At most core


sites, densities decrease with depth below the marsh surface. The lowest bulk densities correspond to a "spongy" layer, which consists of abundant plant material and organic matter, and very little sand or mud.

Water Content

Water content of marsh samples ranges from 28 to 86%, averaging $65 \pm 17\%$. Bluff sediments contain very little water, less than 10% for all samples except the clay unit at the base of Site 3. For sediments that are saturated with water, particularly marsh samples, water content is inversely related to bulk density (Figs. 5-6 and 5-7). Water content, which reflects the volume of pore space between solid particles, is a function of grain size, grain shape, and the packing of grains. Measured wet bulk density is typically 5% less than the calculated Bennett and Lambert values (B&L bulk density). The difference is attributable to incomplete saturation with water, as with the bluff samples, and to the deviation of the average specific gravity (i.e., density) of the solids in the sediment from the constant, 2.72 g/cm³, used by Bennett and Lambert (Eq. 4-3).

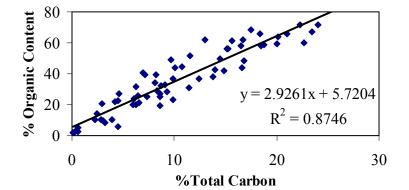
3 Figure 5-6. Measured wet bulk density as Bulk Density (g/cc) Predicted 3&L Bulk Density a function of water content. 2.5 Superimposed on the plot is a (blue) curve 2 representing bulk density calculated using 1.5 Bennett and Lambert's equation. Measured wet bulk density values agree 1 very well with Bennett and Lambert 0.5 values ($R^2 = 0.95$). The outlying cluster of four data points (water content < 20%) 0 80 corresponds to bluff samples. 0 20 40 60 100 Water Content (%)

Marsh sediments contain varying amounts of plant material, which reduces the overall (average) density. Figure 5-7 is a graph of the difference (% variation) between measured bulk density and B&L bulk density, plotted against plant content (i.e., plant > 14 mesh). Plant content accounts for much of the variation from the calculated bulk density.

Figure 5-7. Difference (%) between measured wet bulk density and B&L bulk density, plotted against the plant content of the sediment. Superimposed on the plot are the 99% (red) and 95% (purple) confidence level limits and trend line (blue; $R^2 = 0.158$). The red Xs represent bluff samples and are treated as outliers.

Texture (Grain size composition)

The average textural composition of the clastics (i.e., mineralic or abiotic component) eroded from the study area shoreline is 67% sand, 18% silt, and 15% clay; the sand to mud ration is 2:1. Sand is the most abundant component; silt and clay are present in nearly equal proportions.


Bluff sediments consist almost entirely of clastics (% dry weight). The bulk of the clastics consists of sand-sized particles, except for the clayey unit at Site 3, which is a Sand-Silt-Clay. The beach at each of the bluff sites and the area immediately offshore of Site 3 consist almost entirely of sand (>95%). Gravel is a minor component, contributing approximately 1% of the total clastic component. Samples collected at Sites 4 and 5 are the only sediments that contain gravel.

Marsh sediments contain between 28 to 90% clastics, the textural composition of which varies with depth below the marsh surface. Plant root mass (i.e., plant material and roots retained on a 14-mesh or 1.4 mm sieve) range from <1 to 32% (dry weight). At most sites fine sand is a major clastic component in the upper 20 cm and decreases with depth below the marsh surface. At depth, sediments consist predominately of Silty-Clay and Clayey-Silt (mud). The decrease in sand explains the down-hole decrease in bulk density observed in the cores. There is a significant relationship between % sand and measured dry bulk density ($R^2 = 0.84$). The concentration of sand at the tops of cores may be an artifact of local transport processes. Cores were collected within 1 to 1.5 m of the marsh edge, within the observed wrack line. The sand may have been deposited by over-topping waves during storm events.

Nutrients

Table 5-2 lists summary statistics (mean and standard deviation) for each of the measured nutrients, grouped by type of sample (e.g., bluff, marsh). Total carbon content measured in all bluff and core sediments ranges from 0.04 to 23.4%. Bluff sediments contain the least amount of total carbon, averaging $0.41 \pm 0.2\%$. Carbon content of marsh sediments ranges from 2.29 to 23.4%, averaging $11 \pm 6.2\%$. The average carbon content of the plant material (i.e., >14 mesh) is $32.6 \pm 4.7\%$. Total carbon in the sediments is directly proportional to the total biotic component, accounting of one-third of the total organic content (Fig. 5-8).

Figure 5-8. Total carbon content vs. organic content of the sediments. Superimposed on the plot are the regression line and the equation defining the relationship.

Total nitrogen content measured in bluff and marsh sediments ranges from 0.004 to 1.28%. As with carbon, bluff samples contain the least amount of total nitrogen, averaging less than 0.05%. Marsh sediments yield nitrogen values between 0.13 to 1.28%, averaging $0.58 \pm 0.31\%$. Total nitrogen content of the plant fraction averages $1.02 \pm 0.18\%$.

Table 5-2. Summ	ary statist	ics for each	of the eler	nents measu	ured in the	samples.
BDL indicates belo	ow detect	ion limit for	r the analyt	ical method	1.	
					Plant fr	action
	Marsh s	sediments	Bluff se	diments	(>14 n	nesh)
	Ave.	Std.	Ave.	Std.	Ave.	Std.
Nutrients (%)						
Carbon (C)	11	6.2	0.41	0.2	32.6	4.7
Nitrogen (N)	0.58	0.31	0.036	0.014	1.02	0.18
Phosphorus (P)	0.042	0.017	0.007	0.005	0.052	0.02
Sulfur (S)	1.61	0.77	0.008	0.015	2.57	2.05
Metals (ppm)						
Silver (Ag)	0.47	0.11	BDL		0.67	0.15
Aluminum						
(Al, %)	3.65	0.82	2.54	1.47	1.95	0.33
Beryllium (Be)	1.11	0.31	BDL		BDL	
Bismuth (Bi)	2.42	0.79	BDL		BDL	
Cobalt (Co)	8.48	2.04	8	4.2	14.4	7.7
Copper (Cu)	16.4	8.9	17	4.2	23.4	12
Iron (Fe, %)	1.84	0.57	1.51	0.99	2.18	2.14
Manganese (Mn)	161	68	89	32	88	37
Molybdenum						
(Mo)	5.73	2.44	BDL		9.78	
Nickel (Ni)	25.4	7.5	5.8	4.2	15.7	10.6
Lead (Pb)	24.9	10.6	10.8	3.6	45.9	55.7
Strontium (Sr)	146	39	82	22	88	38
Titanium (Ti, %)	0.278	0.063	0.19	0.13	0.13	0.03
Vanadium (V)	63.9	18.4	37	33.6	57.5	14.3
Yttrium (Y)	11.8	3.3	4.8	1.3	14	3
Zinc (Zn)	61	20	37	12	63	23

Generally, for all of the sediments measured, nitrogen content correlates well with carbon content ($R^2 = 0.78$). Depending on the nature of the organic source, nitrogen is expected to maintain a fairly constant proportionality with carbon content, as shown in Table 5-3, which lists the C:N ratios for the different samples. The mean C:N ratio for marsh samples is higher than both the mean ratio of 7.04, obtained from bottom samples collected in the northern coastal bays (Wells and others, 1994), and the Redfield's ratio of 5.7 for planktonic organisms (Redfield and others, 1963). The intermediate C:N ratio found in the marsh sediment reflects a combination of organic material types.

Total phosphorus content measured in bluff and marsh sediment ranges from 0.004 to 0.124%. As with carbon and nitrogen, the bluff samples contain the least amount of total phosphorus, averaging less than 0.01%. Marsh sediments contain an average of $0.04 \pm 0.012\%$. Total phosphorus content of the plant fraction is higher, averaging $0.05 \pm 0.02\%$. Compared to nitrogen, phosphorus is not as strongly correlated with carbon ($R^2 = 0.25$). In most cores, phosphorus content decreases with depth below the marsh surface, suggesting an upward cycling of phosphorus within the sediment column.

Table 5-3. Comparison of mass ratios of C, N, and P observed in different samples						
(sources).						
	C:N	C:P	N:P			
Plant (>14 mesh)	32.3	711.2	21.7			
Marsh sediments	18.1	243.6	13.0			
Bay bottom sediments (Wells and others, 1994)	7.0	65.1	9.3			
Plankton (Redfield and others, 1963)	5.7	41.0	7.2			

Although not considered a nutrient, sulfur is closely related to nutrient cycling. In sediments, sulfur occurs primarily as inorganic metal sulfides and elemental sulfur. These sulfur species form as a result of a bacterially-mediated reaction involving the oxidation of organic carbon. Under anaerobic conditions, dissolved sulfate (SO_4^{-2}) from seawater acts as the oxidant (Berner, 1967, 1970; Goldhaber and Kaplan, 1974). During the process, sulfate is reduced to sulfide. The sulfide reacts with ferrous iron (Fe⁺²), forming an iron monosulfide precipitate, which further reacts with elemental sulfur to form FeS₂ (pyrite and its polymorph, marcasite) (Berner, 1970). The process results in the enrichment and preservation of sulfur in the sediments and the simultaneous depletion of sulfur.

Sulfur content measured in bluff and marsh sediments ranges from below the detection limit (BDL) to 3.10%. Bluff samples contain the least amount of sulfur, averaging less than 0.05%. Average sulfur content in marsh sediments is $1.61 \pm 0.77\%$. Sulfur content in the plant fraction is significantly higher, averaging $3.23 \pm 2.73\%$. At most marsh sites, sulfur content increases with depth below the marsh surface.

Metals

In addition to the three nutrients (N, C, and P) and sulfur, sediment samples were analyzed for 21 other elements, including 17 metals. Summary statistics for the metals are listed in Table 5-2. A cursory assessment of the results suggests that certain metals, particularly Co, Cu, Fe, Mo, and Pb, are concentrated in the plant material.

Because the sediments analyzed in this study vary significantly in texture and plant content, several techniques were used to evaluate the behavior of the nutrients and metals. One technique, the use of enrichment factors (EF), allows for the comparison of sediments from different environments and for the comparison of sediments whose trace metal contents were

obtained by different analytical techniques (Sinex and Helz, 1981; Wells and others, 1994). An enrichment factor is defined as:

$$EF(x) = \frac{(X/Fe)sample}{(X/Fe)reference}$$
 Eq. 5-1

where: $EF_{(x)}$	is the enrichment factor for the metal X,
X/Fe sample	is the ratio of the concentrations of the metal X to Fe in the
	samples, and
X/Fe reference	is the ratio of the concentrations of the metal X to Fe in the
v	reference material, such as an average crustal rock.

Fe is used for normalizing because anthropogenic sources of Fe are small compared to natural sources (Sinex and Helz, 1981). Taylor's (1964) average continental crust is used as the reference material.

Table 5-4 presents mean EF values, referenced to Taylor's average crustal material, for six metals: Co, Cu, Mn, Ni, Pb, and Zn, for which there are comparable data from other estuaries and coastal bays (Sinex and Helz, 1981). Mean EF values for marsh and bluff sediments lie within the range of values obtained for other coastal bays not affected by industry. When the mean EF values of the various sediment sources within the bay system (i.e., marsh vs. bottom sediments) are compared, several trends become apparent. For example, Zn enrichment is about the same for marsh, bluff and bottom sediments. Marsh sediments are enriched in Cu, Ni and Pb. Curiously, EF values for Co and Cu are highest for bluff sediments.

Table 5-4. Comparison of average enrichment factors of certain metals measured in the							
different groups of sediments from the northern coastal bays. Enrichment factors are							
referenced to the average earth's crust (Taylor, 1964) and calculated using Equation 5-1.							

	Со	Cu	Mn	Ni	Pb	Zn
Marsh sediments	1.18	0.98	0.56	1.22	6.41	2.79
(this study)	±0.63	± 0.68	±0.21	±0.51	±2.91	±0.90
Bluff sediments	2.23	1.90	0.61	0.49	5.53	2.93
(this study)	±1.89	± 0.89	± 0.35	±0.25	±2.53	±0.98
Bay bottom sediments	—	0.52	0.98	0.61	2.98	2.54
(Wells and others, 1994)		±0.29	± 0.85	±0.37	± 1.40	±0.63

Regression Analysis

Another approach used to evaluate the geochemical behavior of nutrients and metals, regression analysis is a technique that MGS has employed routinely for evaluating sediments in the Chesapeake Bay and the coastal bays (Hill and others, 1990; Wells and others, 1994, 1996, 1999). Hill and others (1990) initially devised the method for monitoring bottom sediments in the vicinity of the Hart-Miller Island Dredged Material Containment Facility in northern Chesapeake Bay. This technique is a sensitive indicator that can be used to measure (1)

anthropogenic loading, (2) differences in source material, or (3) changes in geochemical environment. The analysis is based on the association of an element, in this case, a nutrient or metal, with different physical components of the soils or sediments. In this study, the behavior of an element is determined by correlating its concentration with the associated grain size (adjusted by the clastic content) and plant content of the sediment, as shown in Equation 5-2.

$$X = a(Sand) + b(Silt) + c(Clay) + d(Plant)$$
 Eq. 5-2

where: X	is the element (nutrient or metal) of interest,
<i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i>	is the determined coefficients (see Table 5.5),
Sand, Silt, and Clay	is the grain size fractions of the sample multiplied by the clastic
	fraction, and
Plant	is the plant (>14 mesh) fraction

A least-squares fit of the data is obtained using a multiple stepwise regression analysis. The results of this analysis are presented in Table 5-5. Equation 5-2 states that the elemental composition of a sediment is a linear combination of end member components (i.e., Sand, Silt, Clay, and Plant). For any given component, the associated coefficient is the concentration of the element in the pure end member.

The results of this analysis indicate the following:

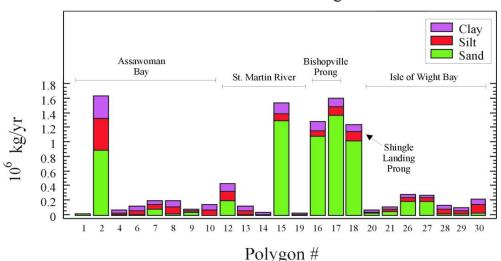
- The association of the elements with the different grain size fractions is relatively uniform throughout the study area. If there were a significant variation among the samples, the correlation of the regression fit would be poor. Samples that did not follow the general trend would be outliers to the regression fit. However, this is not the case. This provides a higher confidence level in extrapolating the data across the region calculating input values. It also provides a potential tool to do a more detailed study using more samples and fewer chemical analyses. Such a study would rely more heavily on grain size analyses and the elemental associations reported here.
- Plant matter is frequently the component with the highest concentration of a given element and is a significant factor in all of the elements analyzed. This is shown in the Rank column in Table 5-5. The rank, ranging from 1 to 4, is the order of the plant material coefficient, 1 being the most concentrated and 4, the least. In nine of the 15 elements included in the regression analysis, plant matter is the most concentrated component. Analytical results of the isolated plant material (Table 5-2) are directly comparable to the determined plant coefficient. Consequently, the plant component must be taken into account when determining nutrient input due to shoreline erosion, especially in soils or sediments with high organic matter content, such as those found in marshes.
- The agreement between the measured metals and nutrients in the plant matter and the determined contribution from the plant end member (regression coefficient) is excellent. Eight of the fifteen elements are within one standard deviation. Where there are differences between the measured plant material and the regression coefficients, the measured values are lower. This is expected, due to the loss of finer plant material in the

separation process. This serves as an internal consistency test to validate the interpretative technique used.

Table 5-5. Coefficients of multiple-stepwise regression of nutrient and metal data. The determined value is the elemental concentration and the factors are the clastic (Sand, Silt, and Clay) and plant fractions of the samples, values of are which substituted into Equation 5-2.

			Estimates o	f coefficien	t	
		а	b	С	d	•
Element (X)	Rank	(Sand)	(Silt)	(Clay)	(Plant)	\mathbf{R}^2
Nutrients (%)		-			-	
С	1			20.5	56.1	88
Ν	1			1.18	2.79	89
Р	1	0.008		0.1	0.155	91
Metals (ppm)						
Со	1	7.9	7.1	15.4	18.6	94
Cu	1	12.1		36.5	62.5	85
Мо	1			15.8	18.5	88
Pb	1	12.1	7.1	53.4	87	91
Zn	1	25	59	104	176	94
Y	1	3.6	11.2	21.3	31.2	96
Ni	2	17.1	62.6	9.2	37.1	91
V	2	9.6	69.5	170	84	98
Ag	3	0.389	0.964	0.52	0.419	96
Al (%)	3	2.35	4.77	7.02	4.12	98
Fe (%)	3	0.66	2.11	4.82	1.81	95
Ti (%)	3	0.153	0.522	0.442	0.264	97

SEDIMENTS AND NUTRIENT LOADINGS


The annual loads (kg/yr) of nutrients and sediments for each of the basins of the northern coastal bays are summarized in Table 5-6. Shoreline included in the land loss polygons accounts for approximately 45% of the total shoreline in the northern coastal bays. Most of remaining shoreline was modified in some way (e.g., hard stabilization, in-filled, etc.) and, therefore, excluded from this study. During the 47-year period, shoreline erosion contributed an estimated 11.6×10^6 kg/yr of total sediments into the three-bay system. Of the total sediments, approximately 42%, or 4.9 x 10^6 kg/yr, are total suspendable solids (TSS). Supendable solids include the fine-grained clastics (silt and clay) and organic fraction. Annual total sediment loadings are greatest in the St. Martin River (6.9 x 10^6 kg/yr), due in part to high bank elevations and relatively dense bluff material, particularly in the Bishopville Prong. Bulk densities of

sediments collected from bluffs averaged 1.4 g/cm³. Total sediment loadings from shore erosion in Assawoman Bay are about half those of St. Martin River ($3.2 \times 10^6 \text{ kg/yr}$), and those in Isle of Wight Bay are even lower ($1.5 \times 10^6 \text{ kg/yr}$). Much of the shoreline bordering Assawoman and Isle of Wight is low-lying marsh composed of sediments with average bulk densities of 0.4 g/cm³.

Sand-sized sediments account for approximately 57% of the total sediments contributed from shoreline erosion. More than one-third of the sand is eroded from the St. Martin River shoreline (Fig. 5-9). Sand is probably deposited locally, as indicated by the sand that has collected immediately offshore of the bluff sites. Eroded sand tends to remain in the vicinity of its source. Except under extremely high flow conditions, sand is generally not considered suspendable. Given the volume of sand eroding into the St. Martin River, one would expect to find a mixture of sandy sediments on the river bottom. Wells and others (1994) mapped fine sediments in the St. Martin River (refer to Fig. 3-4), based on sampling sites located some distance from shore. They probably missed areas covered with sand-sized sediments.

Table 5-6. Summary of annual loadings of sediments and nutrients contributed by shoreline erosion in the northern coastal bays. The length of the 1989 shoreline applies only to the shoreline included in the land loss polygons (Fig. 4-1).

	Basin									
Component	Assawoman Bay	Bishopville Prong	Shingle Landing Prong	St. Martin River	Isle of Wight Bay	Total				
1989 shoreline length (m)	81,164	16,269	12,403	30,706	25,296	165,839				
Annual volume of erosion (m ³ /yr)	6,731	2,178	1,002	4,531	3,043	17,485				
Total sediments (kg/yr)	3,206,065	3,037,005	1,271,018	2,580,549	1,471,477	11,566,114				
Total organics (kg/yr)	804,329	63,831	39,031	435,512	345,508	1,688,212				
Carbon (kg/yr)	214,743	4,979	7,329	110,090	87,424	424,565				
Nitrogen (kg/yr)	11,649	603	603	6,041	4,477	23,373				
Phosphorus (kg/yr)	1,070	161	96	520	497	2,344				
Pb (kg/yr)	80	33	13	53	29	208				
Zn (kg/yr)	182	91	43	126	77	519				
Total clastics (kg/yr)	2,401,736	2,973,173	1,231,987	2,145,036	1,125,969	9,877,902				
Sand (kg/yr)	1,054,523	2,462,059	1,027,552	1,513,751	515,740	6,573,625				
Silt (kg/yr)	768,639	188,739	120,419	290,110	381,012	1,748,918				
Clay (kg/yr)	578,574	230,862	84,016	318,582	229,217	1,441,251				
Gravel (kg/yr)		114,108				114,108				

Sediment Loading

Figure 5-9. Loadings of sand, silt, and clay for each land loss polygon. Gravel, which accounts for less than 1% of the total sediment load, is not shown. Only samples collected in Polygons 16, 17, and 18 contained gravel.

Comparison with existing models and previous studies

Tables 5-7 and 5-8 summarize total nitrogen (TN) and total phosphorus (TP) loads from various sources for the northern coastal bays. Loading figures are taken from two reports: UM and CESI (1993) and MDE (2001). For comparison, the loading estimates for TN and TP from this study are included in the tables. The estimates from the UM and CESI and the MDE reports are presented in this discussion as the range of values for nitrogen and phosphorus loadings into the northern coastal bays. The UM and CESI estimates are about twice those reported by MDE. UM and CESI attributed a large proportion of the runoff loading to feedlot operations, the discharge from which was assumed to enter streams directly. MDE considered the UM and CESI feedlot calculations to be too high (Sajan Pokharel, pers. comm.). Instead, MDE treated feedlot operations as confined and used urban land use loading rates to calculate their loadings. Although MDE used the UM and CESI loading coefficients to calculate runoff based on land use, they updated the land use acreage, using 1997 data. The loading estimates reported by MDE are more conservative, representing an annual baseline loading for the study area. MDE loading estimates were used in developing TMDLs for the northern bays. Neither report considered contributions from shore erosion.

Shoreline erosion represents a significant source of TN and TP loadings to the bays. Depending on the nutrient budget used for comparison (Fig. 5-10), shore erosion contributes between 4.1% to 8.5% of the total nitrogen and 4.7% to 8.5% of the total phosphorus delivered to Maryland's northern coastal bays. Nutrient contributions from shoreline erosion slightly exceed input from known point sources.

Table 5-7. Annual total nitrogen (TN) and total phosphorus (TP) loadings (kg/yr) to the northern coastal bays, based on the UM and CESI (1993) report. Total loadings contributed from shoreline erosion are included for comparison.

Basin ¹	Basin ¹ Point Non-poi sources ¹ sources		Atmospheric sources ³	Shore erosion (this study)	Total loading
		Nitrogen loadi	ng (kg/yr)	· · · ·	
Assawoman Bay	0	52,091	39,800	11,649	103,540
Isle of Wight Bay	0	91,218	32,902	4,477	128,597
St. Martin River	18,290	302,867	12,382	7,247	340,786
Total	18,290	446,179	85,084	23,373	572,923
		Phosphorus load	ding (kg/yr)	· •	
Assawoman Bay	0	4,776	1,602	1,070	7,448
Isle of Wight Bay	0	8,944	1,324	497	10,765
St. Martin River	1,569	28,897	498	777	31,741
Total	1,569	42,617	3,424	2,344	49,954

¹ Point source data for nitrogen and phosphorus were developed by Coastal Environmental Services, Inc., based on information from the Maryland Dept. of the Environment. Data are for 1990-91.

² Non point sources include surface water inputs (runoff), groundwater inputs and inputs from chicken rendering operations. Loading from direct groundwater discharge into the northern coastal bays (from Snug Harbor to Maryland/Delaware line) were estimated using Ritter (1986) coefficients: TN= 123,804 kg/yr and TP=9,420 kg/yr.

³ Atmospheric inputs represent total nitrogen and phosphorus deposition in wet-fall directly to the surface of bay waters, based on an average annual rainfall of 43.8 inches/yr reported for 1990. Concentrations of TN and TP are from Smullen and others (1982).

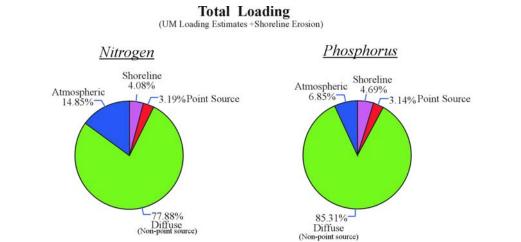
The N:P (mass ratio) loading ratio for material eroded from the shoreline is about 10:1. This ratio is consistent with loading ratios based on both UM and CESI data (N:P = 12:1) and MDE data (N:P = 10:1), both of which are higher than the Redfield ratio (N:P = 7.2:1). The differences are related to the types of nutrient sources (Table 5-3).

In Table 5-9, annual TSS, Pb, and Zn loadings from the UM and CESI report are compared with estimates from this study (MGS). (MDE did not report loading components other than TN and TP.) The annual TSS loadings reported by UM and CESI represent suspended solids delivered by overland runoff. That amount is about three times the TSS contributed by shoreline erosion for the entire study area. However, in Assawoman Bay, the annual contribution of TSS from shoreline erosion is slightly more than input from runoff. Conversely, in the St. Martin River, the annual TSS load from overland runoff is five times that contributed from shoreline erosion.

The sand:mud ratio of sediments contributed from shoreline erosion is 2:1. In the St. Martin River, the ratio is much larger, 4:1. However, the sand:mud ratio of 1:1 reported for the bottom sediments (Wells and others, 1994) in the northern coastal bays does not reflect this large influx of sand. The difference in sand proportions may be accounted for by the contribution of fine-grained material from upland runoff, which has the effect of "diluting" the sand being eroded from the shoreline, explaining the preponderance of fine-grained sediments mapped in the river.

Assuming that the 15.1 x 10^6 kg/yr of TSS from runoff reported by UM and CESI has approximately the same percentage of organics as the sediment contributed from shoreline erosion (i.e. 34.6% organics), then the mud portion of the TSS contributed from upland runoff is 9.81 x 10^6 kg/yr. The total mud contribution from shoreline erosion and upland runoff would be 13.00 x 10^6 kg/yr. When compared to the sand contribution of 6.57 x 10^6 kg/yr from shoreline erosion (assuming that no sand is being contributed from upland runoff), the sand:mud ratio of sediment entering the northern bays is 1:2. To bring the ratio to 1:1, other sources of sand may be assumed, contributions on the order of 6.43 x 10^6 kg/yr of sand from wind deposits and overwash across Fenwick Island and loads transported through the Inlet.

Shoreline erosion contributes significant amounts of Pb and Zn, accounting for 4% and 9.5%, respectively, of the total loadings of these metals from runoff into the bays. However, these percentages may be high. UM and CESI calculated annual loading values for Pb and Zn based on runoff from urban land only, coefficient factors for the two metals being equal. Runoff coefficients for other non-urban land were unavailable at the time.


Table 5-8. Annual total nitrogen (TN) and total phosphorus (TP) loadings (kg/yr) to the northern coastal bays, based on TMDL study for the same study area (MDE, 2001). Total loadings contributed from shoreline erosion are included for comparison.

Basin	Point sources	Overland runoff	Ground- water discharge ¹	Atmospheric deposition	Shore erosion (this study)	Total loadings
		Nitrog	en loading (k	g/yr)		
Assawoman Bay	0	35,086	4,386	23,182	11,649	74,302
Isle of Wight Bay*	0	33,472	4,385	24,377	4,477	66,710
St. Martin River	16,621	117,001	1,258	7,599	7,247	149,726
TOTAL	16,621	185,559	10,028	55,157	23,373	290,738
		Phospho	rus loading	(kg/yr)		
Assawoman Bay	0	4,293	N/R	1,431	1,070	6,795
Isle of Wight Bay*	0	3,732	N/R	1,533	497	5,762
St. Martin River	1,051	13,941	N/R	431	777	16,200
TOTAL	1,051	21,967		3,395	2,344	28,757

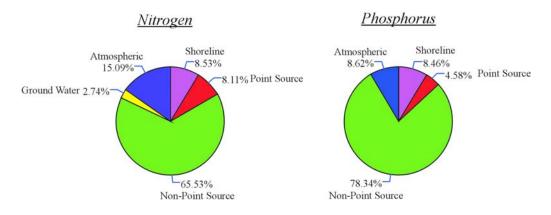

¹ The direct groundwater loads for TN were estimated based on methods described in Dillow and Greene (1999). Direct discharge to the northern coastal bays was separated out from the total reported by John Dillow. MDE did not report groundwater loads for TP.

Table 5-9. Comparison of the UM and CESI (1993) loadings and MGS estimates from shoreline erosion for total suspended solids (TSS), Pb and Zn. All loads in kg/yr.

	UM an	nd CESI (1	993)	MGS (This study)		
Basin	TSS	Pb	Zn	TSS	Pb	Zn
Assawoman Bay	1,918,741	832	832	2,151,542	80	182
Isle of Wight	4,184,314	2,642	2,642	955,737	29	77
St. Martin River	8,992,063	1,493	1,493	1,771,102	99	260
Total	15,095,118	4,967	4,967	4,878,381	208	519

Total Loading (TMDL Loading Estimates +Shoreline Erosion)

Figure 5-10. Annual total nitrogen and total phosphorus loads entering the northern coastal bays, revised to include contributions from shoreline erosion. Top pie charts depict annual loads based on loading report by UM and CESI (1993). The bottom pie charts depict annual loads based on loadings reported by MDE (2001).

6. CONCLUSIONS

Anthropogenic loading of nutrients, metals, and sediment and shoreline armoring alter the natural cycles that operate in the evolution of the coastal bays. These alterations affect the ecosystem of the coastal bays, changing biological communities and the physical structure of the system. Stewardship of these resources requires balancing human impacts to minimize the effects on these natural cycles, while allowing the watersheds to be used for a variety of commercial and residential purposes. Understanding the relative contribution and effects of each of the inputs to the system allows for effective management of the ecosystem. The contribution of shoreline erosion as a component of the natural cycles in the coastal bays was unknown prior to this study. This study has found:

• Rather than relying on general sediment density estimates, this study directly measured sediments for bulk density, improving the accuracy of nutrient load estimates.

• While shoreline erosion contributes a considerable load of suspendable solids, the contribution is about 1/3 that from overland runoff. In Assawoman Bay, TSS loads from shoreline erosion exceed those contributed from upland runoff. On the other hand, runoff is the dominant source of TSS in Isle of Wight Bay and the St. Martin River, where the bulk of the TSS is delivered from the major tributaries (Bishopville and Shingle Landing Prongs, Turville and Manklin Creeks).

• Shoreline erosion is a dominant source of sand into the northern bay system, contributing approximately 6.57×10^6 kg/yr or about half of the sand coming into the bays. Other sources include sand transported through the Inlet and carried across Fenwick Island by wind and overwash. Presumably, upland runoff contributes an insignificant amount of sand. Sand is important in maintaining a healthy balance of bottom habitats in the bays.

• Shoreline erosion is a significant source of nutrients, contributing between 4.1% to 8.5% of the total nitrogen and 4.7% to 8.5% of the total phosphorus delivered to Maryland's northern coastal bays. Nutrient contributions from shoreline erosion slightly exceed input from point sources, and are comparable to, but lower than, atmospheric sources. However, the total nitrogen and total phosphorus measurements do not distinguish among the different forms of the nutrients (i.e., nitrates, ammonia, orthophosphate, etc.) and do not reflect how much of the total may be available for biological uptake.

• In addition to nutrients, shoreline erosion contributes 208 kg/yr of Pb and 519 kg/yr of Zn, accounting for 4% and 9.5% of the total loadings of those metals, respectively, to the bays.

RECOMMENDATIONS

• This report provides initial estimates of the sediment and nutrient loads contributed by shoreline erosion. The load calculations are based on two assumptions: 1) the component concentrations, averaged for each site, reflect the average lithology along the shoreline within a given polygon and 2) bank heights are uniform throughout any given land loss polygon, and the

banks themselves are vertical, rather than sloping. To refine these estimates, additional field work and analyses are required.

• Loadings reflect the average annual input over a 47-year period (between 1942 and 1989). The assumption is that contribution rates also apply for the period between 1989 and the present and will continue for some time in the future. Additional study should look at contributions from erosion in the future based on projected rates of sea level rise and resulting changes in shoreline configuration (refer to Volonté and Leatherman, 1992).

7. REFERENCES

- Anderson, I.C., Miller, W. D., and Neubauer, S. C., 1997, The effects of wrack deposition and increased inundation frequency on production and respiration in *Spartina patens/Distichlis spicata* salt marsh: Virginia Coast Reserve Long Term Ecological Research (VCR_LTER) All Scientists Meeting, June 1997, VIMS, College of William and Mary, Gloucester Pt., Va.
- Bartberger, C.E., 1973, Origin, Distribution, and Rates of Accumulation of Sediments in Chincoteague Bay, Maryland and Virginia (Master's Thesis, Syracuse University), 167 p.
- Bartberger, C.E., 1976, Sediment sources and sedimentation rates, Chincoteague Bay, Maryland and Virginia: Jour. Sed. Pet., vol. 46, p. 326-336.
- Bartberger, C.E., and Biggs, R.B., 1970, Sedimentation in Chincoteague Bay, *in* Natural Resources Institute, University of Maryland, Oct. 1970, Assateague ecological studies, Part II: Environmental threats, Contribution #446, Chesapeake Biological Lab, Solomons, Md., p. 70-90.
- Bennett, R.H., and Lambert, D.V., 1971, Rapid and reliable technique for determining unit weight and porosity of deep-sea sediments: Marine Geology, vol. 11, p. 201-207.
- Berner, R.A., 1967, Diagenesis of iron sulfide in recent marine sediments, *in* Lauff, G., ed., Estuaries: Washington, D.C., American Association for the Advancement of Science Special Pub. 83, p. 268-272.
- Berner, R.A., 1970, Sedimentary pyrite formation: American Journal of Science, v. 268, p. 1-23.
- Conkwright, R.D., 1975, *Historical Shorelines and Erosion Rates Atlases*: Maryland Geological Survey, Baltimore, Md., 4 volumes.
- Dillow, J.J.A., and Green, E.A., 1999, Ground-water discharge loadings to the coastal bays of Maryland: U.S. Geological Survey Water-Resources Investigations Report 99-4167, 8 p.
- Dolan, R., Lins, H., and Stewart, J., 1980, Geographical analysis of Fenwick Island, Maryland, a Middle Atlantic coast barrier island: U.S. Geological Survey Professional Paper 1177-A, 24 p.
- Fisher, J.J., 1967, Origin of barrier island chain shoreline, Middle Atlantic states: Geol. Soc. Amer. Special Paper 115, p. 66-67.
- GSA, 1991, Rock-Color Chart, Geological Society of America, Boulder CO.

- Goldhaber, M.B., and Kaplan, I.R., 1974, The sulfur cycle, *in* Goldberg, E.D. (ed.), The Sea, Volume 5, Marine Chemistry: New York, Wiley-Interscience, p. 569-655.
- Hennessee, L., 2001, Acquiring a modern digital shoreline for Maryland from recent (1988-1995) orthophotography (Coastal and Estuarine Geology File Report No. 00-7): Maryland Geological Survey, Baltimore, Md., 18 p.
- Hennessee, L., and Stott, J., 1999, Shoreline changes and erosion rates for the northern coastal bays of Maryland (Coastal and Estuarine Geology File Report No. 99-7): Maryland Geological Survey, Baltimore, Md., 30 p.
- Hennessee, L., Stott, J., and Bethke. T., 2002a, Shoreline changes and erosion rates for the southern coastal bays of Maryland (Coastal and Estuarine Geology File Report No. 00-1): Maryland Geological Survey, Baltimore, Md., 41 p.
- Hennessee, E.L., Valentino, M., Lesh, A.M., and Myers, L., 2002b, Determining shoreline erosion rates for the coastal regions of Maryland (Part 1) (Coastal and Estuarine Geology File Report No. 02-04): Maryland Geological Survey, Baltimore, Md., 32 p.
- Hill, J.M., Hennessee, E.L., Park, M.J., and Wells, D.V., 1990, Interpretive techniques for assessing temporal variability of trace metal levels in estuarine sediments (Abst): Goldschmidt Conference, Hunt Valley, Md.
- Ibison, N.A., Frye, C.W., Frye, J.E., Hill, C.L., and Burger, N.H., 1990, Sediment and nutrient contributions of selected eroding banks of the Chesapeake Bay estuarine system (Technical Report to Council on the Environment for Coastal Zone Management Grant #NA88AA-D-CZ092): Department of Conservation and Recreation, Division of Soil and Water Conservation, Shoreline Programs Bureau, Gloucester Point, Va., 71 p.
- Ibison, N.A., Baumer, J.C., Hill, C.L., Burger, N.H., and Frye, J.E., 1992, Eroding bank nutrient verification study for the lower Chesapeake Bay: Department of Conservation and Recreation, Division of Soil and Water Conservation, Shoreline Programs Bureau, Gloucester Point, Va., 80 p.
- Krumbein, W.C., and Pettijohn, F.J., 1938, Manual of sedimentary petrography: New York, Appleton-Century-Crofts, 549 pp.
- Leatherman, S.P., 1983, Historical and projected shoreline changes, Ocean City and northern Assateague Island, Maryland: Technical Report No. 79, Maryland Water Resources Research Center, University of Maryland, College Park, Md., 39 p.
- Maryland Coastal Bays Program (MCBP), 1999, Today's treasures for tomorrow: towards a brighter future: a comprehensive conservation and management plan for Maryland's Coastal Bays, Berlin, Md., 181 p.

- Maryland Department of the Environment (MDE), 2001, Total maximum daily loads of nitrogen and phosphorus for five tidal tributaries in the northern coastal bays system, Worcester County, Maryland, Final Report submitted to Watershed Protection Division, USEPA, Region III, Dec. 2001.
- NOAA, 1988, NOAA/NOS-CERC cooperative shoreline movement study: Part II- Cape Henlopen, DE - Cape Charles, VA, 16 maps, 1:24,000 scale, National Ocean Service, Washington, D.C.
- Owens, J.P., and Denny, C.S., 1978, Geologic Map of Worcester County, scale 1:62,500: Maryland Geological Survey, Baltimore, Md.
- Owens, J.P., and Denny, C.S., 1979, Upper Cenozoic deposits of the central Delmarva Peninsula, Maryland and Delaware: U.S. Geol. Survey. Prof. Paper 1067-A, 28 p.
- Pokharel, Sajan, personal communication, email dated July 31, 2002, from Mr. Pokharel of the Computer Modeling Program, Technical and Regulatory Services Administration (TARSA), Maryland Dept. of the Environment, re: comparison of MDE TMDL loading calculations for total nitrogen and total phosphorus with those of UM and CESI report (1993).
- Redfield, A.C., Ketchum, B.H., and Richards, F.A., 1963, The influence of organisms on the composition of sea-water, *in* Hill, M.N. (ed.), The Sea, Volume 2, The Composition of Sea-water, Comparative and Descriptive Oceanography: London, Interscience, p. 26-77.
- Ritter, W.F., 1986, Nutrient budgets for the inland bays, Document # FPR-86-001, Agriculture Engineering Dept., Delaware Agricultural Experiment Station, Univ. of Delaware, Newark, Del.
- Schwimmer, R.A., 2001, Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, U.S.A.: Jour. Coastal Research, vol. 17, p. 672-683.
- Shepard, F.P., 1954, Nomenclature based on sand-silt-clay ratios: Jour. Sed. Petrology, vol. 24, p. 151-158.
- Sinex, S.A., and Helz, G.R., 1981, Regional geochemistry of trace elements in Chesapeake Bay sediments: Environ. Geol, vol. 3, p. 315-323.
- Singewald, J.T., and Slaughter, T.H., 1949, Shore Erosion in Tidewater Maryland: Maryland Department of Geology, Mines, and Mineral Resources, Baltimore, Md., Bulletin 6, 141 p.
- Smullen, J. T., Taft, J. L., and Macknis, J., 1982, Nutrient and sediment loads to the tidal Chesapeake Bay system *in* Chesapeake Bay Program technical studies: a synthesis: U.S. Environmental Protection Agency, Annapolis, Md., p. 150-251.

- Stevenson, J.C., Ward, L.G., Kearney, M.S., and Jordan, T.E., 1985, Sedimentary processes and sea level rise in tidal marsh systems of Chesapeake Bay: Proceedings of the Conference on Wetlands of the Chesapeake – Protecting the future of the Bay, April 1985, Easton, Md., Environmental Law Institute Publication, p. 37-62.
- Stott, J.A., Hennessee, E.L., and Kerhin, R.T., 1999, 2000, *Shoreline Changes*: Maryland Geological Survey, Baltimore, Md., 9 maps.
- Taylor, S.R., 1964, The abundance of chemical elements in the continental crusts a new table: Geochim. Cosmochim. Acta, vol. 28, p. 283-294.
- Toscano, M.A., 1992, Record of Oxygen Isotope Stage 5 on the Maryland inner shelf Atlantic Coastal Plain – A post-transgressive-highstand regime *in* Wehmiller, J.F. and Fletcher, C.H. (eds.), Quaternary Coasts of the United States: Lacustrine and Marine Systems: Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication No. 48, p. 89-99.
- Toscano, M.A., Kerhin, R.T., York, L. L., Cronin, T. M., and Williams, S. J., 1989, Quaternary stratigraphy of the inner continental shelf of Maryland: Maryland Geological Survey Report of Investigations No. 50, Baltimore, Md., 117 pp.
- Toscano, M.A. and York, L. L., 1992, Quaternary stratigraphy and sea-level history of the U.S. middle Atlantic Coastal Plain: Quaternary Sci. Rev., vol. 11, p. 301-328.
- Truitt, R.V., 1968, High winds high tides: a chronicle of Maryland's coastal hurricanes: Univ. of Maryland, Nat. Res. Inst., Ed. Ser. No. 77, 35 pp.
- University of Md. (UM), and Coastal Environmental Services, Inc. (CESI), 1993, Maryland's coastal bays: An assessment of aquatic ecosystems, pollutant loadings, and management options: submitted to Maryland Dept. of the Environment, Chesapeake Bay and Special Projects Branch, Baltimore, Md.
- U.S. Army Corps of Engineers, 1962, The March 1962 storm along the coast of Maryland: Report of District activities during and immediately following the storm, Baltimore District, Baltimore, Md., 21 p.
- Van Loon, J.C., 1980, Analytical Atomic Absorption Spectroscopy: Selected Methods: Academic Press, New York, 337 p.
- Volonté, C.R., and Leatherman, S.P., 1992, Future sea level rise impacts: Maryland's Atlantic coastal bays (Report prepared for the Maryland Department of Natural Resources through a grant from the Coastal and Watershed Resources Division (No. NA17OZ0497-01): University of Maryland Geography Department, College Park, Md., 97 p.

- Wells, D.V., and Kerhin, R.T., 1982, Geological analysis and re-evaluation of Isle of Wight shoals as a potential borrow site: report submitted to Tidewater Administration, 33 p.
- Wells, D.V., Conkwright, R.D., Hill, J.M., and Park, M.J., 1994, The surficial sediments of Assawoman Bay and Isle of Wight Bay in Maryland: Physical and chemical characteristics (Coastal and Estuarine Geology File Report No. 94-2): Maryland Geological Survey, Baltimore, Md., 99 p.
- Wells, D.V., Conkwright, R.D., Gast, R., Hill, J.M., and Park, J., 1996, The surficial sediments of Newport Bay and Sinepuxent Bay in Maryland: Physical and chemical characteristics (Coastal and Estuarine Geology File Report No. 96-2): Maryland Geological Survey, Baltimore, Md., 116 p.
- Wells, D.V., and Conkwright, R.D., 1999, Maryland coastal bays sediment mapping project: Physical and chemical characteristics of the sediments – Atlas and Synthesis Report (Coastal and Estuarine Geology File Report No. 99-5) in HTML format: Maryland Geological Survey, Baltimore, Md., on Compact Disk (CD-ROM).
- Wells, D.V., and Ortt, R.A., Jr., 2001, Bathymetric survey of Assawoman Bay, St. Martin River, Sinepuxent Bay and Newport Bay (Coastal and Estuarine Geology File Report No. 01-2): Maryland Geological Survey, Baltimore, Md., on Compact Disk (CD-ROM).

APPENDIX A

Site descriptions (field notes, photos, cross sections, profiles)

Core logs (core descriptions, lithology, radiographs, photos)

Note: In the radiographs, sediment layers with more plant material, which is nearly transparent to x-rays, appear as darker areas in the image. Layers with higher percentages of clastics (i.e., sand-, silt-, and clay-sized minerals) are denser or more opaque to x-rays and appear as lighter areas. White layers represent denser lenses of sediment, not necessarily composed of sand, but containing a higher percentage of clastics (non-plant material).

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE FIELD DESCRIPTION: Site 1- Hasty Pt.

Site ID: 1 (Joint site w/ UMCES

Site name: Hasty Point (or White Horse Pt.)

Location: St. Martin River- south shore near northern terminus of Beauchamp Rd.; approx. 1 mi. downstream from confluence of Shingle Landing and Bishopville Prongs

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 251 063	486 039

Date: Multiple dates, first visited 11/28/00; samples collected on 7/17/01 Time: Described by: DVW; JMH Shoreline type (e.g., marsh, bluff, beach): extensive marsh Extent (length) of reach (ft): Land use/cover along reach: residential; mixed wooded and cultivated fields Comments: Set out pore water equilibrators (peepers) w/ Court Stevenson, on 5/2/01; took hydrolab readings offshore of site (see next page).

Site description: Site located on eastern most point of marsh, extending into St. Martin River; uniformly flat, very thick grass (predominately *S. alterniflora*); root mat extends 12 " or more in depth; could not core through root mat, removed top 12"with a spade, then cored below that. Other vegetation included *S. patens* (~10 meters from edge; small bushes (*Iva*) and *Distichlis* in between

Reach description: Extensive Spartina marsh, extending ~500 meters landward; backed by pine/oak forest and houses (trailer park).

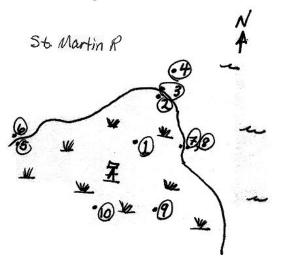
Plants:

Species	Percent
Spartina alterniflora	90%
Distichlis (Spike grass)	2.5%
Iva (Marsh Elder)	2.5%
S. patens	5%

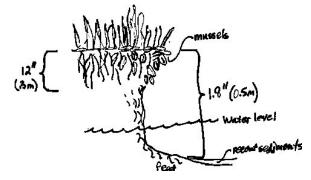
Samples: Samples taken 7/17/01

ID	Type*	Location/Descpt.
1-plug	All	1.02 meters from edge
		of marsh (point); top
		33 cm
1-core	All	Bottom 38 cm;
1-off	GS	0.3 m offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)


Photos:

Card	Frame	Date/Time	Subject
	6-11	11/28/00 12:36p-1:17p	
	5	5/1/01 11:27a	
	6	5/1/01 11:27a	
	7	5/1/01 11:29a	
	5	7/17/01 8:57a	

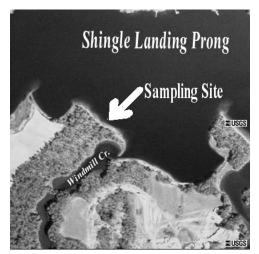


Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE FIELD DESCRIPTION: Site 1- Hasty Pt.

Plan view (sample locs; site features, reach & beach extents)

Stratigraphic section

Stadia	readin	igs (see	fig to	right for l	ocations)
Pt.	Тор	Mid	Bot	Dist	Bank	Comments
	1			(from level)	Hgt (ft)	
				(ft)		
Level A		4.62		0		
1	4.84	4.77	4.70	14		
2	5.19	5.04	4.89	30	1.83	By Court's post
3	7.025	6.87	6.715	31		Base of marsh
4	7.71	7.51	7.31	40		Off shore
5	4.905	4.80	4.69	43	1.615	Top of marsh
6	6.52	6.415	6.30	22		Base of marsh
7	4.78	4.64	4.50	28	1.8	Top of marsh
8	6.59	6.44	6.29	30		Base of marsh
9	4.78	4.525	4.25	53		
10	4.79	4.515	4.24	55		


Hydrolab readings taken :	5/2/01 1:35 pm EI	DT
Temp. (degrees C)	21.7	
Salinity (ppt)	24.25	
DO (mg/l)	8.89	113% Saturation
pH	5.88	
Turb. (ntu)	9.8	
Depth (m)	1.5	

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 3- Windmill Creek

Site ID: 3

Site name: Windmill Creek **Location:** Shingle Landing Prong- south shore, north side of the mouth of Windmill Creek

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 250 799	484 364

Date: 5/01/01 Time: 12:33 pm EDT Described by: Jim Hill Shoreline type (e.g., marsh, bluff, beach): bluff fronted by narrow beach Bank elevation (ft):

Above water: see stadia data

Below water

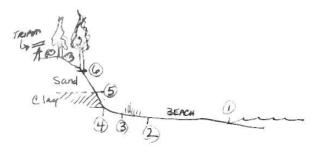
Land use/cover along reach: forest behind bluffs

Site description: Fine sand beach with ~12 ft bluff backing beach; top of bluffs moderately to highly vegetated; mix pine/oak with shrubs, low trees under-story (pred. Maples, bayberry and holly). Off shore bottom sediments very red, clayey.

Reach description: Bluffs along eroding headland, extending ~300 meters, southeast end truncated by a spit at mouth of Windmill Ck., north end truncated by shallow cove.

Plants:

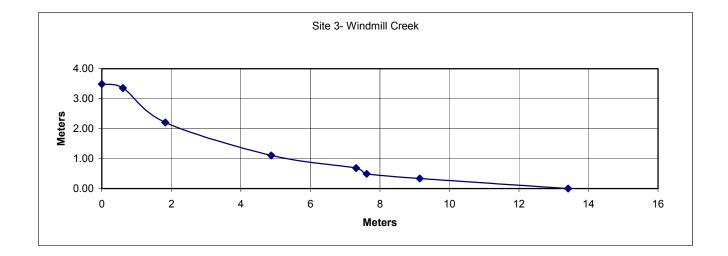
Species	Percent
Pine	35
Oak	35
Maple	10
Bayberry	10
holly	10


Samples:		
ID	Type*	Location**
3-Т	All	Top layer of bluff
3-B	All	Bottom of bluff; clay layer
3-beach	GS	Grab from beach
3-Off	GS	Grab offshore

Samulaa

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

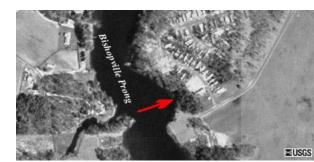
****Location** = show on stratigraphic section


Stratigraphic section: Top 7.8 ft sandy loam, weathering to reddish color; sharp contact, below it greenish clayey sand, very hard, dry; part of bluff face is vegetated

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 3- Windmill Creek

Stadia Readings	Stadia	rod intercept (F	Feet)	F	Feet	Me	eters	
Pt.	top	middle	bottom	Dist	Elev	Dist	Elev	
1	15.69	15.48	15.25	44	0	13.41	0.00	WL
2	14.52	14.37	14.22	30	1.11	9.14	0.34	Beach, Beach grab sample
3	13.99	13.87	13.74	25	1.61	7.62	0.49	Base of bluff
4	13.35	13.23	13.11	24	2.25	7.32	0.69	Clay, bluff sample
5	11.94	11.86	11.78	16	3.62	4.88	1.10	Sand/clay interface
6	8.26	8.24	8.2	6	7.24	1.83	2.21	Sand, Bluff sample
Tripod		4.04		0	11.44	0.00	3.49	Top of bluff

Site 3- Windmill Creek


Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040)

SITE/SAMPLE DESCRIPTION: Site 4 - Bishopville Prong

Site ID: 4

Site name: Bishopville Prong **Location:** East bank of Bishopville Prong, just north of public boat ramp (Shell Mill Landing)

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 252 930	483 615

Date: 4/30/01 Time: 12:28 EDT Described by: DVW/JMH Shoreline type (e.g., marsh, bluff, beach): bluff Extent (length) of reach (ft): Bank elevation (ft): 2.7 m Land use/cover along reach: forested; south end of bluff backed by parking lot **Site description:** Fine sand muddy beach with ~8 ft bluff backing beach; top of bluffs moderately vegetated; mix pine/oak with shrubs. Some grass along beach.

Reach description: Low bluffs along east bank of Bishopville Prong, just upstream of boat ramp, extending north ~250 ft (~80 m), to small stream, salt marsh. Bluffs continue upstream. Both sides of river characterized by vegetated bluffs, heights varying from 6 to 10 ft. North end: N 4 252 977 E 483 630 UTM South end: N 4 252 900 E 483 608

Plants:

Species	Percent
Pine	40
Oak	25
maple	20
other	15

Samples:

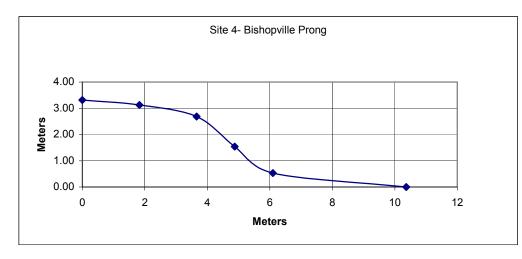
İD	Type*	Location**
4- T	All	Top of bluff
4-B	All	Bottom of bluff
4-beach	GS	Grab on beach

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

****Location** = show on stratigraphic section

Photos:

Card	Frame	Time	Subject
2	1	1:18	Dan sampling
2	2	1:19	Dan sampling
2	3	1:19	Bluff from water
2	4	1:20	Bluff close-up



Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 4 - Bishopville Prong

Stratigraphic section Bluff appeared to be homogenous in material, yellowish gray sand with some clay, clay content slightly higher toward the top of the bluff; sampled top and bottom.

Dite i Dishopv	The Prong								
Stadia Readings		Feet		F	Feet	Me	eters		
Pt.	top	middle	bottom	Dist	Elev	Dist	Elev		
5	15.43	15.26	15.09	34	0	10.36	0.00	Water	
4	13.62	13.52	13.42	20	1.74	6.10	0.53	Sample	Base of bluff
3	10.29	10.21	10.13	16	5.05	4.88	1.54		
2	6.52	6.46	6.4	12	8.8	3.66	2.68	Sample	
1	5.03	5	4.97	6	10.26	1.83	3.13		
Tripod		4.38		0	10.88	0.00	3.32		Top of bluff

Site 4- Bishopville Prong

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 5 – Photographed bluff

Site ID: 5

Site name: Photographed bluff **Location:** St. Martin River- north shore; opposite Station 1 (Hasty Pt.)

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 251 580	486 313

Date: 5/1/01 Time: 1:54 pm EDT Described by: DVW/JMH Shoreline type (e.g., marsh, bluff, beach): bluff Extent (length) of reach (ft): ~200 meters Bank elevation (ft): 2 m Land use/cover along reach: agriculture/field **Site description:** Narrow beach backed by acute bluff stabilized by tree roots; vegetated buffer backed by large field. Bluff composed of laminated deposits w/ pebble lenses.

Reach description: Bluffs along eroding headland, extending ~200 meters, truncated on the north end by small stream/marsh and on south end by small cove/marsh. North end: N 4 251 607 E 486 262 UTM South end: N 4 251 476 E 486 398

Plants:

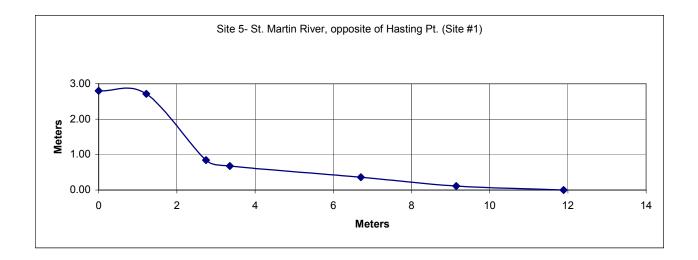
Species	Percent
Pine	45
Oak	45
Maple	10

ID	Type*	Location**
5	All	Mid bluff
5- beach	GS	Grab on beach
5-off	GS	Grab offshore

Type** = bulk density (BD); grain size (GS); trace metal (TM) *Location** = show on stratigraphic section

Photos:

P notos:			
Card	Fra me	Time	Subject
	1	2:09p	Field behind bluff
	2	2:09p	Beach from top
	3	2:09p	Level
	4	2:23p	Close up of bluff face
	5	2:24p	
	6	2:27p	Bluff face w/Dan


Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 5 – Photographed bluff

Stratigraphic section Lamination evenly distributed along height of bluff, yellowish gray sand with gravel lenses and trace of clay. <u>Photo to the right</u>: Bluff face with Dan Sailsbury holding stadia rod. Bluff is approximately 2 meters high. Profile of bluff is shown below.

Site 5- St. Martin River, opposite of Hasting Pt. (Site #1) Stadia

Readings		Feet		F	eet	Met	ers	
Pt.	top	middle	bottom	Dist	Elev	Dist	Elev	
1	13.685	13.49	13.295	39	0	11.89	0.00	
2	13.27	13.12	12.97	30	0.37	9.14	0.11	Water line
3	12.42	12.31	12.2	22	1.18	6.71	0.36	
4	11.32	11.265	11.21	11	2.225	3.35	0.68	
5	10.77	10.725	10.68	9	2.765	2.74	0.84	Base of bluff
Tripod		4.31		0	9.18	0.00	2.80	Top of bluff

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040)

SITE/SAMPLE DESCRIPTION: Site 6 – Peach Pt.

Site ID: 6

Site name: Peach Point **Location:** St. Martin River, north shore at mouth of Harry Creek

UTM Zone 18	Northing	Easting
NAD83, m		
Actual	4 251 114	487 056

Date: 5/1/01 Time: 13:13 EDT Described by: JMH Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): 500 m **Bank elevation (ft):** 0.7 m (2.2 ft) **Land use/cover along reach:** Marsh **Site description:** Sampling site is on small point (Peach Pt.) of marsh on north side of Harry Creek, small tributary flowing into St. Martin River

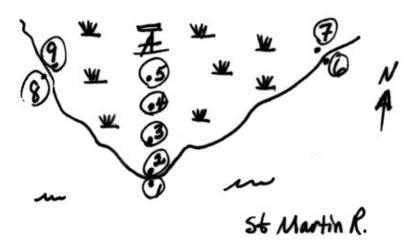
Reach description: Extensive marsh on north side of Harry Creek. Marsh is flat, uniform, *Spartina sp.* dominating, shoreline irregular. Small stream to the north and Harry Creek to the south truncate reach. Marsh is backed by forest.

Plants:

Species	Percent
S. alterniflora	90
Iva	5
Limonium	2

Samples:

ID	Type*	Location
Core 1	All	43 " from edge of water
Plug 1	All	Top 9.5 " of sediment column
1- off	GS	Offshore grab


***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Photos:

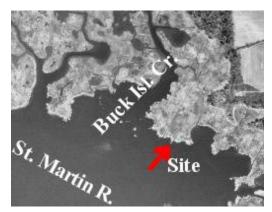
Date	Time	Subject
5/1/01	15:29	Marsh toward tree line
5/1/01	15:29	On site w/ JimH and DanS
7/17/01	10:23	DanS and NeilD

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 6 – Peach Pt.

Plan view

Site 6 -	Peach Point	Stadia	data

Stadia Read	Readings Ft. Feet Meters		Meters					
Pt.	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height
tripod		4.3			0			
1	7.35	7.08	6.81	54	-2.78	16.5	-0.85	2.69
2	4.67	4.39	4.13	54	-0.09	16.5	-0.03	
3	4.72	4.48	4.24	48	-0.18	14.6	-0.05	
4	4.66	4.48	4.3	36	-0.18	11.0	-0.05	
5	4.58	4.49	4.4	18	-0.19	5.5	-0.06	
6	6.86	6.71	6.56	30	-2.41	9.1	-0.73	2.245
7	4.61	4.465	4.32	29	-0.165	8.8	-0.05	
8	6.35	6.095	5.84	51	-1.795	15.5	-0.55	1.725
9	4.62	4.37	4.12	50	-0.07	15.2	-0.02	
				:	*accumed al	wation for tri	nod (loval) ne	<u>L</u>


*assumed elevation for tripod (level) pt.

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 7 – Saltgrass Pt.

Site ID: 7

Site name: Saltgrass Point **Location:** On north shore of St. Martin River, in vicinity of Buck Island Pond and Buck Island Creek

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 250 713	488 658

Date: 5/1/01; 7/16/01 Time: 15:45; 16:30 EDT Described by: JMH Shoreline type (e.g., marsh, bluff, beach): marsh Land use/cover along reach: natural

Extent (length) of reach (ft):

Bank elevation (ft): 0.7 m (2.4 ft) Site description: Site is on a 'pinched point" that is almost an island. Mosquito ditching is east of point. Shoreline convoluted. Marsh is flat, uniform, *Spartina alternaflora* dominating. Abundant mussels covering on top marsh and in sediment. Entire site is very 'spongy,' quaking when walking.

Reach description: Extensive marsh characterized by very convoluted shoreline, and network of ditching. Several creeks meander through marsh area. Marsh is backed by forest buffer, then agriculture fields.

Plants:

Species	Percent
Spartina alterniflora	95

Samples:

ID	Type*	Location
Core 7	All	110 " from edge
Plug 7	All	Top 8" of sediment
7-Off	GS	Grab offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Photos:

Date	Time EDT	Subject
5/1/01	15:56	Level & tripod
5/1/01	16:03	Ditching
7/16/01	16:40	Core site

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 7 – Saltgrass Pt.

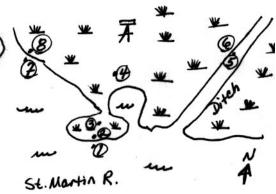

Photo: Dan Sailsbury on site with stadia rod. Red flag marks location of core.

Photo: Mosquito ditching east of sampling site.

Plan view

Site 7	- Salt Grass Point	
Site 7	- Salt Grass Point	

Stadia Readir	ngs	Fee	et	Feet		Feet Meters		
Pt.	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height
1	8.2	7.88	7.57	63	-3.54	19.2	-1.08	3.23
2	4.96	4.65	4.34	62	-0.31	18.9	-0.09	
3	4.66	4.39	4.12	54	-0.05	16.5	-0.02	
4	4.55	4.42	4.29	26	-0.08	7.9	-0.02	
tripod		4.34			0		0.00	
5	6.95	6.78	6.6	35	-2.44	10.7	-0.74	2.20
6	4.75	4.58	4.41	34	-0.24	10.4	-0.07	
7	7	6.69	6.38	62	-2.35	18.9	-0.72	1.66
8	5.34	5.03	4.72	62	-0.69	18.9	-0.21	
					*assumed ele	vation for tr	inod (level)	nt

rassumed elevation for tripod (level) pt.

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040)

SITE/SAMPLE DESCRIPTION: Site 8 – Smokehouse Cove

Site ID: 8 Site name: Smokehouse Cove Location: St. Martin River, north shore, on west side of Isle of Wight

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 249 726	489 906

Date: 5/3/01, 7/16/01 Time: 1618; 1620 EDT Described by: JHM, DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): Bank elevation (ft): 0.6 m (1.9 ft) **Site description:** Site on point of extensive, irregularly shaped shoreline, marsh with pocket beaches each side. Marsh predominately *Spartina sp* with some marsh Elder (*Iva*), some barren spots.

Reach description: Extensive marsh characterized by convoluted shoreline of mixed marsh and sandy beaches, and large open water areas. Marsh interrupted with higher areas of pine/oak cover; area backed by forest toward Isle of Wight.

Plants:

Species	Percent
Spartina alterniflora	80
Iva	15

Samples:

ÎD	Type*	Location
Core 8	All	63": from edge
8-Off	GS	Grab offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Photos:		
Date	Time	Subject
5/3/01	1650	site
5/3/01	1652	
7/16/01	1620	Core site w/Dan
7/16/01	1622	Stand of oaks/pines
7/16/01	1623	Picket beach

Photo: Shoreline to the south of site, with small pocket beach

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 8 – Smokehouse Cove Page 67 of 2

Plan view

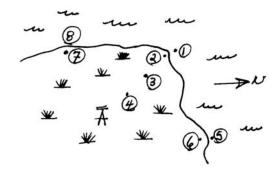
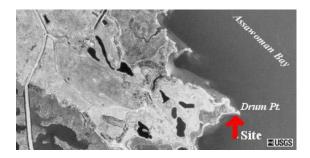


Photo: Site showing pocket beach to the north.

Site 8 - Smokehouse Cove


Stadia 1	Rea	dings	Fe	eet	F	Feet	Me	eters	
Pt. #		top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height
	1	6.8	6.48	6.16	64	-2.00	19.5	-0.61	2.15
	2	4.75	4.33	4.11	64	0.15	19.5	0.05	
	3	4.48	4.15	3.9	58	0.33	17.7	0.10	core site
	4	4.41	4.28	4.15	26	0.20	7.9	0.06	
tripod			4.48		0	0.00		0.00	
	5	6.92	6.65	6.38	54	-2.17	16.5	-0.66	1.72
	6	5.18	4.93	4.66	52	-0.45	15.8	-0.14	
	7	6.48	6.06	5.64	84	-1.58	25.6	-0.48	1.74
	8	4.73	4.325	3.91	82	0.16	25.0	0.05	

*assumed elevation for tripod (level) pt.

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 9 – Drum Point

Site ID: 9 Site name: Drum Point Location: Assawoman Bay, west shore, first point north of Isle of Wight

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 250 598	491 619

Date: 5/1/01; 7/17/01 Time: 1730 EDT Described by: JMH; DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): Bank elevation (ft): 0.6 m (2.0 ft) Land use/cover along reach: Golf course **Site description:** Site on end of small 'pinched' point, tipped with small island. Fairly flat marsh, backed (~100 yds) by Lighthouse SoundGolf Course. Very little natural vegetation as buffer between Golf Course and marsh areas.

Reach description: Reach highly irregular shoreline, with islands, and pocket beaches. In some areas, shoreline protection has been emplaced, particularly where golf greens are near the shoreline (see photo to right with Darlene and Dan surveying: in background two golfer are putting on green located on point north of site.

Plants:

Species	Percent
Spartina sp.	100

Samples:

Sampiest		
ID	Type*	Location
Core 9	All	31" from edge
Plug 9	All	Top 7.25" of sediment
9-OFf	GS	Grab offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Date	Time EDT	Subject
5/1/01	1725	Drum Pt.
5/1/01	1730	Golf course

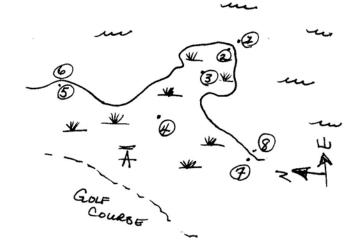


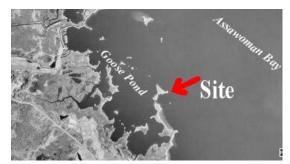
Photo: Level site, looking northwest; golf green in background

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 9 – Drum Point

Photo: Level, looking east toward core site.

Site map: stadia data next page

Stadia Re	adings	Fe	eet		Feet	Me	eters	
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height (ft.)
1	7.62	7.305	6.99	63	-3.02	19.2	-0.92	2.69
2	4.93	4.62	4.31	62	-0.33	18.9	-0.10	
3	4.86	4.58	4.3	56	-0.29	17.1	-0.09	core site
4	4.62	4.47	4.32	30	-0.18	9.1	-0.05	
tripod		4.29		0	0.00	0.0	0.00	
5	6.76	6.63	6.49	27	-2.34	8.2	-0.71	2.06
6	4.7	4.57	4.44	26	-0.28	7.9	-0.09	
7	5.99	5.83	5.67	32	-1.54	9.8	-0.47	1.33
8	4.66	4.5	4.34	32	-0.21	9.8	-0.06	
				*	assumed elev	ation for trip	ood (level) pt.	Ave2.03


Site 9 - Drum Point

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 10 – Tulls Island

Site ID: 10

Site name: Tulls Island Location: Assawoman Bay, west shore, unnamed point between Drum Point and Hills Island, immediately west of former Tulls Island.

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 251 937	491 272

Date: 5/1/01; 7/17/01 Time: 1740 EDT Described by: JMH; DVW Shoreline type (e.g., marsh, bluff, beach): marsh

Extent (length) of reach (ft):

Bank elevation (ft): 0.4 m (1.3 ft) **Land use/cover along reach:** Golf course; Lighthouse Sound Development (residential)

Site description: Site on end of large island. Fairly flat marsh, irregularly shaped; abundant mussels, some bald (no vegetation) spots.

Photo: Behind level, look east toward core site.

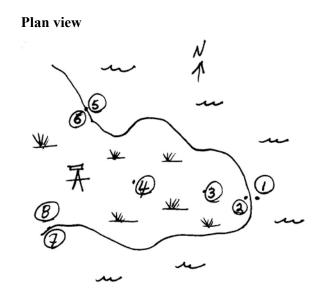
Reach description: Reach highly irregular shoreline, with islands, and some pocket beaches. Site on island which recently (within last 25 years) separated from end of extensive peninsula.

Samples:

~ • • • • • • • • • • • • • • • • • • •							
ID	Type*	Location					
Core 10	All	31" from edge					
Plug 10	All	Top 8.5" of sediment					
10-Off	GS	Grab offshore					

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Plants:


Species	Percent
Spartina sp.	90
Broad leaf shrub (<i>Iva</i> ?)	<10

Date	Time EDT	Subject
5/1/01	1755	Site with boat, looking due east
5/1/01	1730	Site looking northwest

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 10 – Tulls Island

Photo: Level, looking southeast toward core site (behind boat).

Stadia Re	eadings	Fe	eet		Feet	M	eters	
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height
1	5.82	5.49	5.16	66	-1.32	20.1	-0.40	1.35
2	4.46	4.14	3.82	64	0.03	19.5	0.01	
3	4.49	4.22	3.95	54	-0.05	16.5	-0.02	
4	4.27	4.17	4.07	20	0.00	6.1	0.00	
tripod		4.17		0	0.00	0.0	0.00	
5	5.97	5.89	5.83	14	-1.72	4.3	-0.52	1.46
6	4.49	4.43	4.37	12	-0.26	3.7	-0.08	
7	5.42	5.33	5.24	18	-1.16	5.5	-0.35	1.08
8	4.34	4.25	4.16	18	-0.08	5.5	-0.02	
					*assumed elev	ation for trip	ood (level) pt.	Average-1.30

Site 10 - Tulls Island

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 11 – Hills Island

Site ID: 11 Site name: Hills Island Location: Assawoman Bay, west shore, on island north of Tulls Point in Goose Pond area

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 252 708	491 080

Date: 7/17/01 Time: 1623 EDT Described by: DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): `1000 m Bank elevation (ft): 0.5 m (1.6 ft) Land use/cover along reach: Duck blind on island; Golf course; Lighthouse Sound Development (residential) on mainland Site description: Site on north side of small island marsh east of Goose Pond area. Island ~ 75 x 100 meters. Marsh predominately *Spartina*, some beach lavender; edge of marsh armored with live mussels (photo to the right).

Reach description: Reach highly irregular shoreline, with islands, and some pocket beaches.

Plants:

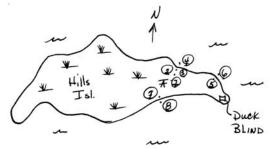
Species	Percent
Spartina alterniflora	90
Limonium	>5

Date	Time EDT	Subject
7/17/01	1655	Site showing mussel shells
7/17/01	1655	Core site
7/17/01	1655	Island looking west

Photo: Core site with areas of exposed mud, and live mussels

Photo: Looking east toward duck blind on point.

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 11 – Hills Island


Samples:		
ID	Type*	Location
Plug 11	All	Top 7.5" of sediment column
Core 11	All	48" from edge
11-Off	GS	Grab offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Photo: At level, looking west.

Plan view stadia data below

Site	11 -	Hills	Island
SIL	11 -	111115	isianu

Stadia F	Readings	Fe	eet	F	eet	Μ	eters	
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height
1	4.51	4.425	4.34	17	-0.13	5.2	-0.04	
2	4.96	4.81	4.66	30	-0.51	9.1	-0.16	core site
3	4.57	4.41	4.23	34	-0.11	10.4	-0.03	-1.74
4	6.32	6.15	5.98	34	-1.85	10.4	-0.56	
tripod		4.3		0	0.00	0.0	0.00	
5	4.97	4.75	4.53	44	-0.45	13.4	-0.14	-0.91
6	5.89	5.66	5.43	46	-1.36	14.0	-0.41	
7	4.54	4.32	4.1	44	-0.02	13.4	-0.01	-2.27
8	6.81	6.585	6.36	45	-2.29	13.7	-0.70	
					*assumed el	evation for tr	ripod (level) pt.	Average -1.64

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 12 – Peeks Creek

Site ID: 12

Site name: Peeks Creek Location: Assawoman Bay, west shore, shoreline between Peeks Creek and Back Creek, SE of confluence of Greys Creek and Back Creek

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 253 294	490 442

Date: 5/3/01; 7/17/01 Time: 1255 EDT; 1500 EDT Described by: DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): ~700 m (length of peninsula) Bank elevation (ft): 0.4 m (1.4 ft) Land use/cover along reach: Undeveloped, mixed marsh, woods **Site description:** .Site on marsh point protruding NW into Greys Creek. Sandy beach to the north of site. Marsh is predominately *S. alterniflora*, with some *Limonium* (sea lavender) and *D. spicata* (spike grass). Some mussels on surface, near edge. Marsh backed by stands of shrubs (*Iva*), cedars, and various hardwoods, some of which were dead or dying.

Reach description: Reach is northeast shore of small peninsula or neck separating Peeks Creek from Greys Creek. Shoreline is irregular and consists of alternating marsh points and pocket beaches. Neck is ~150 m wide, with large expanse of water and channeling behind it.

Photos:

Date	Time EDT	Subject
5/3/01	1255	Reach to south
5/3/01	1256	Reach to north
5/3/01	1257	Core site
7/17/01	1508	Close up of marsh eroding

Samples:

ID	Type*	Location
Plug 12	All	Top 8" of sediment
Core 12	All	35" from edge
12-Off	GS	Grab offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Plants:

Species	Percent
Spartina alterniflora	85
Limonium	<5
Distlichlis spicata	<5

Photo : Reach looking north; note small cove and pocket beach in background

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 12 – Peeks Creek Plan view

Photos: Above: Reach looking southeast; Below: looking northwest toward back pond

Nocket Bocket BBACH W W T W Shrubs

Stadia Re	adings	Fe	eet		Feet	Me	eters	
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height
1	7.41	6.83	6.25	116	-2.58	35.4	-0.79	1.44
2	5.97	5.39	4.81	116	-1.14	35.4	-0.35	
3	5.68	5.26	4.84	84	-1.01	25.6	-0.31	
4	5.12	4.89	4.66	46	-0.64	14.0	-0.20	
tripod		4.25			0.00	0.0	0.00	
5	6.88	6.69	6.5	38	-2.44	11.6	-0.74	1.75
6	5.13	4.945	4.76	37	-0.70	11.3	-0.21	
7	6.61	5.965	5.31	130	-1.72	39.6	-0.52	0.89
8	5.71	5.08	4.43	128	-0.83	39.0	-0.25	
				;	*assumed elev	vation for trip	ood (level) pt.	Average -1.36

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040)

SITE/SAMPLE DESCRIPTION: Site 13 - South Hammocks

Site ID: 13 Site name: South Hammocks Location: Assawoman Bay – west shore, SE south tip of southern-most island

UTM Zone 18 NAD83, m	Northing	Easting
Site 13	4 253 246	492 193
Site 13B	4 253 251	492 200

 Site 13B
 4 253 251
 492 200

Land use/cover along reach:

Undeveloped, marsh with some forest cover

Site description: Site on southern most point of South Hammocks Island, eroding marsh between two pocket beaches; vegetation predominately *S. alterniflora*, with some scrubs backing marsh; pines and hardwoods in interior of island.

South Hammocks site

Date: 5/3/01; 7/17/01; 12/11/01 Time: 1320 EDT; 1400 EDT; 1528 EST Described by: DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): ~500 m (length of island) Bank elevation (ft): 0.7 m (2.2 ft)

Reach description: Southern shoreline of South Hammocks Island; irregular shoreline of alternating marsh and sandy beaches. The southern half of island now separated from northern half.

Plants:

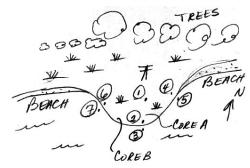
Species	Percent
Spartina alterniflora	>95
Limonium	<5

Samples: Note two cores collected at this site.

ID	Type*	Location
Plug 13	All	Top 7" of
Core 13	All	166" from edge
13 Off	GS	Grab offshore
Core 13B	All	36" from edge; no top plug taken

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Photos:		
Date	Time EDT	Subject
5/3/01	1323	Close-up of bank showing slumping
5/3/01	1324	Site look W, from offshore
7/17/01	1413	Site looking WNW, from offshore
7/17/01	1413	Site looking N, from offshore
7/17/01	1414	Close-up of bank showing shelf and slumping
12/11/01	1422	Coring site
12/11/01	1422	Close-up of bank
12/11/01	1423	Site looking NE, from offshore


Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040)

SITE/SAMPLE DESCRIPTION: Site 13 - South Hammocks

Photo: Reach to the east of core site; note pocket beach

Site map:

Site 13 -	Sou	ith Hami	mocks Island	7/17/2001		1420 EDT			
Stadia	Read	dings	Fee	t		Feet	M	eters	
Pt. #	-	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height (ft.)
	1	4.1	3.98	3.86	24	0.17	7.3	0.05	
	2	4.31	4.12	3.94	37	0.03	11.3	0.01	-1.80
	3	6.11	5.92	5.73	38	-1.77	11.6	-0.54	
tripod			4.15		0	0.00	0.0	0.00	
	4	4.09	3.85	3.61	48	0.30	14.6	0.09	-2.05
	5	6.15	5.9	5.65	50	-1.75	15.2	-0.53	
	6	4.96	4.75	4.54	42	-0.60	12.8	-0.18	-2.86
	7	7.83	7.61	7.39	44	-3.46	13.4	-1.05	
						*assumed ele	evation for trip	ood (level) pt.	-2.24

Photo: Offshore looking at site toward west.

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 14 – Lone Cedar Point

Site ID: 14 (joint site with UMCES) Site name: Lone Cedar Point Location: Assawoman Bay – west shore; extreme northern extent of study area (on Md/Del State Line), site of eroding cemetery

UTM Zone 18 NAD83, m	Northing	Easting
Site 14	4 255 752	492 582
Site 14B	4 255 727	492 780

Lone Cedar Point 14B

Date: 11/28/00; 5/2/01; 7/17/01; 12/11/01 Time: 1400 EST; 1400 EDT; 1200 EDT; 1300 EST Described by: DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): 250 m (750 ft) approx. length of peninsula Bank elevation (ft): 0.6 m (2.0 ft)

Land use/cover along reach: eroded roadbed runs along north side of peninsula; abandon cemetery on point; otherwise, mixed forest/marsh; undeveloped

Site description: <u>Site 14</u>: original site located on south side of Lone Cedar Point, an eroding peninsula. Site on marshy point with sandy beach on both sides. <u>Site 14B</u>:Due to high pedestrian traffic (popular sunbathing area), UMCES moved site to marsh island off top of Lone Cedar Pt. Island dominated by *S. alterniflora*. Also "quaking" (i.e., shakes when walking, with tide/waves).

Reach description: Eroding peninsula with mixed marsh, beach shoreline; deciduous trees and shrubs in center; sandy beach along north side; pocket beached along south side, some topography.

Photo: Site 14B looking toward Lone Cedar Pt.

Plants:

Species (Site 14)	Percent
Spartina alterniflora	80
Limonium	<5
Spartina patens	<5
Iva	1
Phragmites	1

Photo: Site 14-original site looking east.

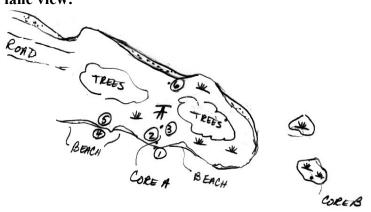
Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 14 – Lone Cedar Point

Photos.

Samples:		
ID	Type	Location
Plug-14	All	Top 7" of sediment column
Core-14	All	43" from edge
Core 14 beach	GS	Back side of beach to the east
14- Off	GS	Grab offshore
Core 14B	All	Island, 3.3 ft from waters edge

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

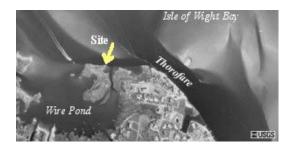
		-
Date	Time EDT	Subject
11/28/00	1404	CourtS, setting out peerpers, collecting plant tissue
11/28/00	1405	۰۵
11/28/00	1414	Beach east
12/11/01	1337	Site 14B-Dan&Rich collecting core
12/11/01	1338	Site 14B-Dan&Rich
12/11/01	1350	Site 14B looking to Lone Cedar Pt.


Hydrolab readings 5/2/2001 12:52 EDT			
Temp	21.32	degrees C	
Salinity	23.6	ppt	
DO	7.37		
Sat	91	%	
pН	5.54		
Turb	8.1	NTU	
Depth	0.93	ft	

Note: We had trouble collecting a core at site 14 due to significant compression when inserting liner and suction when extracting core. Collected second core on adjacent beach to see if sand overlies muddy marsh sediment.

Site 14 - Lone Cedar Point 64 . 12

Sta Read		Feet		Feet		Meters		Bank Hht
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	(ft.)
1	7.2	6.93	6.65	55	-2.31	16.8	-0.70	2.21
2	5	4.72	4.44	56	-0.10	17.1	-0.03	
3	4.73	4.595	4.46	27	0.03	8.2	0.01	
4	6.88	6.62	6.36	52	-2.00	15.8	-0.61	1.83
5	5.05	4.79	4.53	52	-0.17	15.8	-0.05	
tripod		4.62		0	0.00	0.0	0.00	
6	4.61	4.08	3.55	106	0.54	32.3	0.16	
								Average
	*	assumed	elevation	ı for tri	pod (leve	l) pt.		2.02


Plane view:

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 18 – Wire Pond

Site ID: 18 Site name: Wire Pond Location: Isle of Wight Bay – southwest shore; first cove west of the Thorofare

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 245 252	490 931

Date: 11/28/00; 5/2/01 Time: 1500 EST; 0853 EDT Described by: JMH Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): Bank elevation (ft): m (ft) Land use/cover along reach: **Site description:** On first marsh point east of mouth to Wire Pond; extensive flat marsh; shallow shelf surrounding point.

Photo: Site looking SW toward Wire Pond

Reach description: Site is on island marsh at mouth of Wire Pond, south Isle of Wight Bay; deep channel (The Thorofare)cuts along north side of island

Plants:

Species	Percent
Spartina alterniflora	70
Distichlis (Spike grass)	<10
Limonium (Sea Lavander)	<10

Samples:

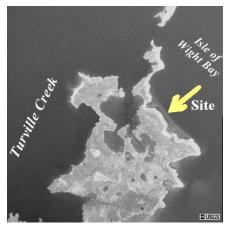
ĪD	Type*	Location
Plug 18	All	Top 9.5" of sed column
Core 18	All	39" from edge
18 Off	GS	Grab offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Date	Time EDT	Subject
11/28/00	1512	Site from distance
11/28/00	1513	Site looking SW
11/28/00	1514	Site looking SE
5/2/01	0905	Site
5/2/01	0905	Site

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 18 – Wire Pond

Site map: stadia data below


Site 18 - Wire Pond

Stadia R	leadings	F	eet		Feet	Me	eters	
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height (ft.)
1	13.14	12.52	11.9	124	-7.89	37.8	-2.40	
2	8.36	7.74	7.12	124	-3.11	37.8	-0.95	
3	6.35	5.84	5.32	103	-1.21	31.4	-0.37	1.02
4	5.33	4.82	4.31	102	-0.19	31.1	-0.06	
5	5.31	4.805	4.3	101	-0.18	30.8	-0.05	
6	4.8	4.61	4.43	37	0.02	11.3	0.01	
tripod		4.63		0	0.00	0.0	0.00	
7	6.03	5.585	5.14	89	-0.96	27.1	-0.29	0.85
8	5.18	4.74	4.3	88	-0.11	26.8	-0.03	
9	7.35	6.81	6.27	108	-2.18	32.9	-0.66	1.77
10	5.58	5.04	4.5	108	-0.41	32.9	-0.12	
				2	*assumed elev	ation for trip	ood (level) pt.	Average 1.21

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 19 – Keyser Point

Site ID: 19 (joint with UMCES) Site name: Keyser Point Location: Isle of Wight, west shore; south side of mouth into Isle of Wight Bay

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 246 364	489 794

Date: 11/28/00; 5/2/01; 5/3/01 Time: 12:00 EDT; Described by: DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): ~450 m (length of island **Bank elevation (ft):** 0.28 m (0.925 ft)

Land use/cover along reach:

undeveloped marsh; forest and large homes on mainland next to island. NOTE: visited the site several times; the first and second times with Dr. Stevenson to set out pore water equilibrators (peepers) and to take hydrolab data offshore (see next page)

Site description: Site on eastern shore of island marsh; site almost entirely vegetated with *S. alterniflora* and some small shrubs (*Iva*).

Reach description: Site located on rregularly shaped extensive island marsh, approx. 450 m by 300 m; marsh punctuated with internal ponds/channels;

Plants:	
---------	--

Species	Percent
Spartina alterniflora	70
Distichlis (Spike grass)	20
Limonium (Sea Lavander)	>5

Samples:

ÎD	Type*	Location
Plug 19	All	Top 7" of sediment
Core 19	All	61" from edge
10 Off	GS	Grab offshore

***Type** = bulk density (BD); grain size (GS); trace metal (TM)

Photos:				
Date	Time EDT	Subject		
11/28/00	1158	Setting out grid for grass tissue sampling		
11/28/00	1159	Clipping grasses (for biomas)		
11/28/00	1207	Site from offshore		

Photo: Site from offshore.

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 19 – Keyser Point

Plan view

Photo: Court Stevenson and Al Wesche setting out grids to collect plant tissue samples. Isle of Wight is in background

Site 19 - Keyser Point

Hydro	Hydrolab readings 5/2/2001								
Offshore	at site	12:00	At OC	14:15					
19		EDT	Inlet	EDT					
Temp	18.5	degrees C	11.75	degrees C					
Salinity	28.9	ppt	32.25	ppt					
DO	7.49	mg/l	8.72	mg/l					
Sat	93	%	95	%					
pН	5.64		5.6						
Turb	3.8	NTU	3.7	NTU					
Depth	1.5	m	1.25	m					

Stadia Re	adings	Fe	eet		Feet	M	eters	
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height (ft.)
1	6.33	5.97	5.61	72	-1.41	21.9	-0.43	0.94
2	5.39	5.025	4.66	73	-0.47	22.3	-0.14	
3	5.09	4.76	4.43	66	-0.20	20.1	-0.06	
4	4.69	4.52	4.36	33	0.04	10.1	0.01	
tripod		4.56		0	0.00	0.0	0.00	
5	5.82	5.59	5.36	46	-1.03	14.0	-0.31	0.67
6	5.15	4.92	4.69	46	-0.36	14.0	-0.11	
7	6.39	5.93	5.47	92	-1.37	28.0	-0.42	1.16
8	5.23	4.77	4.31	92	-0.21	28.0	-0.06	
				*	assumed elev	ation for trip	ood (level) pt.	Average 0.93

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 22 – Isle of Wight

Site ID: 22

Site name: Isle of Wight **Location:** Assawoman Bay – west shore; NE shore of Isle of Wight, directly across from site 8 on NW shore of Isle.

UTM Zone 18 NAD83, m	Northing	Easting
Actual	4 249 932	490 966

Date: 7/17/01 Time: 1845 EDT Described by: DVW Shoreline type (e.g., marsh, bluff, beach): marsh Extent (length) of reach (ft): ~1000 m

Bank elevation (ft): 0.49 m (1.6 ft) **Land use/cover along reach:**

Undeveloped marsh; backed by forest **Site description:**. Site on small island on point of extensive marsh; thickly vegetated with almost all Spartina alterniflora, some beach lavender.

Reach description: Site on small island off very extensive marsh area characterized by convoluted shoreline with islands and ditching

Photo: Dan and Neal collecting core at site; looking SE

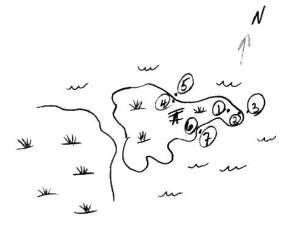
Plants:

Species	Percent
Spartina alterniflora	>90
Limonium	5

Samples:

ÎD	Type*	Location
Plug 22	All	Top 9" of sediment
Core 22	All	45" from edge
22 Off	GS	Offshore grab

***Type** = bulk density (BD); grain size (GS); trace metal (TM)


Photos: Subject Date Time EDT 7/17/01 1845 Dan and Neal w/core 7/17/01 1845 Site 7/17/01 1848 Neal w/core 7/17/01 1907 Site from distance 7/17/01 1908 OC sunset

Shore Erosion as a Source of Sediments & Nutrients, Northern Coastal Bays, Maryland (CZM Grant M01-057 CZM 040) SITE/SAMPLE DESCRIPTION: Site 22 - Isle of Wight

Photo: Main marsh, looking SW from site.

Plan view

Stadia Re	eadings	Fe	eet		Feet	M	eters	
Pt. #	top	middle	bottom	Dist	Elev*	Dist	Elev	Bank Height (ft.)
1	4.12	4.03	3.94	18	0.00	5.5	0.00	
2	4.35	4.13	3.92	43	-0.10	13.1	-0.03	1.61
3	5.97	5.74	5.51	46	-1.71	14.0	-0.52	
tripod		4.03		0	0.00	0.0	0.00	
4	4.2	4.12	4.04	16	-0.09	4.9	-0.03	1.26
5	5.48	5.375	5.27	21	-1.35	6.4	-0.41	
6	4.22	3.99	3.76	46	0.04	14.0	0.01	1.93
7	6.16	5.92	5.68	48	-1.89	14.6	-0.58	
	-			*	^k assumed elev	vation for trip	od (level) nt	A verage $= 1.60$

Site 22 - Isle of Wight

^sassumed elevation for tripod (level) pt. Average = 1.60

Site #1- Whit	e Horse Point, St.	Martin River	Total length - 53.	3 cm Date collected - 7/17/01 Date processes - 7/31/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
		0-13	5YR 2/2 to 10 YR 3/2	Active root zone; dark gray brown silty mud; lots of large (2-4 cm diameter) rhizomes; some mussels shells in life position at top
		13-19	10 YR 3/2	Active root zone; gray brown mud with rhizomes, root material
		19-27	10 R 3/2	Gray brown, more compact mud w/ large fibrous root remnants
		27-32	5 YR 3/2	Gray brown spongy peat w/ voids; very little sediment (clastics)
C. C. C.	13 14	32-38	5 YR 2/2	Dark gray brown mud w/ root remnants
1 A A		38-42	5 YR 2/1	Dark gray black mud, watery, w/ peat and root remnants
	17 18	42-46.5	5 YR 2/2 mottled w/ 10 R 3 /4	Dark gray brown silty mud mottled with peat and root remnants
and the second second	0	46.5-47.5	10 R 3 /4	Reddish brown peat
		47.5-53.3	5 YR 2/2	Dark gray brown silty mud with abundant peat and root remnants

Site #6 Peach	Point, St. Martin River,	Core 6	Total ler	ngth- 61 cm Date collected- Date processed-
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
	-10	0-11	5 YR 2/2, mottled with N2	Active root zone, live mussels in very top, live small crab; dark brown to black silty mud, lots of active roots
	-20 10	11-24	10 YR 2/2	Active root zone; section lighter in color, dark brown to ducky yellowish brown silty mud
		24-38	10 YR 3/2	Active root zone; long fibrous roots, moderate dusky grown mud
	15 08 17 0.0 0 0 0	38-45	5 YR 2/2	Very dark dusky brown mud, root material, short peat-like
		45-48.5	5 YR 2/1	Very dark gray brown mud, less plant material
		48.5-61	10 YR 2/2	Dark brown dusky yellow mud with pockets of reddish brown peat, lots of root material, spongy layer

Site #7 – Salt Grass Point, St. Martin River	Total length-95 cm	Date collected-	Date processed-			
Note: Overall appearance is banding alternating dark and light layers; clastics generally brown to olive gray, and plant material more						
yellow to reddish in color.						

		Interval	Color	
Radiograph	Photograph	(cm)	(Munsell Color Standard, GSA, 1991)	Description
	Unit of the second s	0-11	5 YR 3/2	Active root zone; layered brownish gray to moderate brown,
		11-14	5 YR 2/2	very compact silty mud; some sand with lots of large roots
1 1	10-	14-17	5 YR 3/2	
24753	20-	17-30.5	5 YR 4/4	Active root zone; moderate brown mud, spongy, less dense,
	Ta the second se			root material smaller in size and oriented more horizontal than vertical
	outs 40	30.5-40	10 R 2/2	Very dusky red, less dense mud with peat like root material, some larger plant pieces, layered horizontally
	2	40-46	5 YR 2/2	Dusky brown, less dense spongy peat layer
	50	46-56.5	10 R 2/4	Moderate yellow brown mud, abundant plant material, lots of voids
	60	56.5-59	5 YR 4/2	Alternating brown to brownish gray mud and yellow brown to
		59-63.5	5 YR 3/2	reddish brown peat layers
	3 70-	63.5-66	5 YR 2/1	
		66-73.5	5 YR 3/2	
	80	73.5-77.5	5 YR 2/2	1
		77.5-82	10 YR 3/2	
AN LOW		82-85	5 Y 2/1	
-		85-90.5	5 YR 2/1]
Press.		90.5-95.5	10 YR 2/2	

Site #8 Smokeh	ouse Cove, St. Martin Rive	er To	otal length- 63.5 cm Dat	te collected- 7/16/01 Date processed- 8/9/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
		0-14.5	Banded 10 YR 2/2 to 5 Y 5/2	Active root zone; banded olive gray to dusky yellow brown mud and sand layers, layers ranging 1 to 3 cm thick, abundant roots
		14.5-26.5	5 YR 2/2	Active root zone; uniform dark brown silty mud, sand decreasing with depth, roots
	11 DE	26.5-29	10 YR 2/2	Active root zone; darker dusky brown mud, root material, peat like clumps
		29-51	5 YR 2/2	Uniform dusky brown mud with peat and roots
		51-57	10 Y 2.5/1	Dark brown peaty mud
	N R R	57-59	5 Y 4/4	Olive brown silty mud with some roots and peat
		59-63.5	N2	Very dark almost black, mud with abundant peat material

Site # 9 Drum	Point, Assawoman B	ay To	tal length- 78 cm D	Date collected-7/17/01 Date processed- 8/20/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
the state	Company and the second	0-2.5	Banded 5 YR 5/2 & 10 YR 6/2	Active root zone; banded (lamina) pale brown to pale yellow brown, sandy mud, mussels at top, roots
A LAND		2.5-18	Banded 5 YR 2/1; 5	Active root zone; Less obvious banding, and decreasing with
	-10		YR 3/2; 10 R ³ / ₄	depth, abundant roots, moderate brown to dark brown black
(A 11)	- ALANAN -	18-26.5	(oxidized roots) Mottled N4 &	sandy mud, some root tracks highly oxidized Active root zone; mottled dark gray to dark olive gray more
Children and		18-20.5	5 Y 3/1	compact mud, abundant roots
			5 1 5/1	compact muu, abundant roots
	-30	26.5-33.5	5 YR 2/2	Dark dusky brown peaty mud, root material becoming more horizontal in orientation
	11 11 11	33.5-40	5 YR 2/1 to 5 YR 2/2	Sharp contact? Redox interface; dark brown, less dense very peaty layer, with very top and bottom slightly darker
		40-50	5 YR 2/2	Dusky brown very peaty mud
		50-55.5	5 YR 3/2	Dusky gray brown, very fibrous mud, reddish brown peat clumps
1.1		55.5-58	5 R 2/1	Very dark brownish black peaty mud, very fibrous, spongy
		58-67	10 YR 2/2	Light dusky yellow brown spongy peaty mud
	-70	67-78	10 YR 3/2	Note: bottom 2 cm lost when core was opened; yellowish brown, more compact mud containing less plant material

Site # 10 Tulls I	sland, Assawoman Bay Tota	al length- 50	.5 cm Date collecte	ed- 7/17/01 Date processed- 8/22/01
Dediesensch	Dhata ang l	Interval	Color (Munsell Color	Description
Radiograph	Photograph	(cm)	Standard, GSA, 1991)	Description
	_0	0-2.5	5 YR 3/2	Brownish black to olive black mud, abundant
		2.5-21.5	5 YR 2/2	plant roots; root orientation becoming more random with depth; although lamina (`1-2 cm thick) visible in radiograph, not discernable visually; no abrupt or obvious boundaries, very subtle, gradual lightening down core, based on radiograph, an increase in plant material downcore
		21.5-50.5	5 YR 2/1 to 5 Y 2/1	

Site # 11 Goo	Site # 11 Goose Pone, Assawoman Bay		- 60 cm Date colle	ected- 7/17/01 Date processed- 8/23/01
		Interval	Color	
Radiograph	Photograph	(cm)	(Munsell Color Standard, GSA, 1991)	Description
		0-6	5 Y 4/1	Active root zone: olive gray sandy silty mud with very large roots; thick layer of mussels on surface; subtle color banding, gradual darkening down core.
		6-8.5	5 G 3/1	
		8.5-19	5 GY 3/1	Active root zone: dark greenish gray mud with large, thick stems; root abundance decrease with depth
		19-34	5 Y 3/1	Active root zone: dark olive gray mud with root material, several very large woody (non root) stems; shift from predominately vertical orientation of plant material to horizontal orientation
		34-41	5 Y 2/1	Very dark olive gray mud; abundant peat material
		41-47	N 1 to 5 GY 1/1	Redox boundary at 41 cm; dark greenish black to black peaty mud
		47-60	5 G 2/1	Slightly lighter greenish black, watery muddy peat, very "loose" packing (with voids), some discernable root stems

Site # 12 Peek	ks Creek, Assawoman Bay	Total length- 6	7.5 cm Date	e collected- 7/17/01 Date processed- 8/24/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
		0-20.5	5 y 2/1	Active root zone: dark olive black sandy silty mud with mussels on top; large roots; radiograph incite thin lamina (sandier?) but not visible to the eye
		20.5-32.5	5 GY 2/1	Active root zone: dark greenish black slightly less dense silty mud with abundant roots
		32.5-38	5 YR 2/1	Brownish black muddy peat; some larger root stems, appears to be more oxidized than surrounding layers
	-40	38-43	5 Y 2/1	Dark olive black peaty mud
4		43-58.5	10 YR 2/2 to 10 YR 3/2	Dusky yellow brown, highly peaty, gradually lightens to yellowish brown; plant material decrease with depth
44.43	60	58.5-64	5 G 2/1 to N 1	Redox boundary at 58.5 cm; greenish black to black peaty mud
2.a.	25 26	64-67.5	5 GY 4/1	Dark greenish gray mud, lighter in color than rest of core; also less plant material

Site # 13 – Sou	Site # 13 – South Hammocks, Assawoman Bay		ength- 35.5 cm	Date collected- 7/17/01 Date processed- 8/27/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
AN TATE	— 0 cm	0-1	5 Y 8/1	Active root zone; yellowish gray sand
******		1-3	5 Y 2/1	Active root zone; dark olive black to brown muddy sand
	Li estero : "	3-7	5 Y 8/1	Active root zone; yellowish gray very fine sand
		7-19	Banded; 5 Y 8/1 10 YR 4/2 N 3	Active root zone; alternating lamina of yellowish gray sand, dark yellow brown sandy mud, and dark gray very compact sandy mud; sand increased down core, bottom of section is dark brown gray sand ; plant material present but not abundant except in very bottom of section
		19-29.5	Mottled; 5 YR 4/1 N 2	Active root zone; mottled brownish gray to gray black silty mud; plant material throughout section; redox boundary at 27 cm
		29.5-35.5	5 GY 2/1	Greenish black mud with abundant plant material (roots and peat)

Site # 13B So	Site # 13B South Hammocks, Assawoman Bay		Total length- 70	.5 cm Date collected- 12/11/01 Date processed- 12/18/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
		0-8	10 YR 3/2	Active root zone; dark yellow brown muddy very fine sand, mottled with black muddy sand; abundant live roots
	10	8-14	5 Y 2/1	Active root zone; sharp boundary at 8 cm, black muddy sand, gradually lightening down core
		14-22	10 YR 3/2	Active root zone (to 20 cm); olive brown to black mud, less sand
A		22-26	5 Y 2/1	Olive black mud with peat and roots
		26-47	Mottled and banded 5 G 3/1 to 5 YR 3/1	Mottled and subtly banded dark greenish gray mud to dark brownish gray sandy mud, peat increasing downcore
		47-70.5	Mottled; 5 YR 3/2 5 YR 2/2	Mottled grayish brown to dusky brown sandy mud with abundant plant (peat and roots) material, very peaty at bottom of core

Site # 14 Lor	ne Cedar Point, Assawomar	n Bay	Total length- 45	cm Date collected- 7/17/01 Date processed- 8/27/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
C ALL STATE		0-2	5 Y 4/1	Active root zone; olive gray, very compact muddy sand w/ lenses of sand, roots
	- · ·	2-3	5 Y 7/1	Active root zone; yellow gray sand, roots
		3-17.5	5 YR 2/1	Active root zone; olive black to brownish black, silty mud, very compact, roots
	20	17.5-26	5 GY 2/1	Active root zone; greenish black silty mud, less compact; abundant plant material, roots, peat; gap where core broke when extracting from site; plant roots orientation shifting from vertical to horizontal
	30 10	26-34.5	5 GY 4/1 to 5 G 5/1	Active root zone; firm, dark greenish gray silty mud; gradually darkening to dark greenish gray; plant material
	15 PL C	34.5-38	5 GY 3/1	Redox interface at 34.5 cm; greenish black firm sandy mud; plant material
	40 17 10	38-45	5 Y 2/1	Olive black sandy mud; plant material

Site #14B Lo	one Cedar Key, Ass	sawoman Bay,	Total Length- 86.5	5 cm Date collected- 12/11/01 Date processes- 12/18/1
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
	10	0-13	5 YR 4/1 to 5 YR 2/1	Active root zone; mottled medium to dark gray brown mud, with abundant rhizomes; very muddy at top, sand gradually increasing w/depth
	L'AND T	13-15	5 Y 5/1	Active root zone; dark gray brown sandy mud with rhizomes
	29	15-23.5	5 YR 2/1 to N2	Active root zone to 19 cm; dark gray brown mud with roots
		23.5-32.5	5 YR 2/1	
	-40	32.5-46.5	5 YR 3/1	Gray brown peat, slight banding
		46.5-64.5	5YR 2/1, 5 YR 4/1, 5 Y 4/1	Banded peaty mud with sand lenses
		64.5-75.5	N6 to 5 B 7/1	Sharp contact; steel gray, very clayey compact, dry mud
	50	75.5-80	5 YR 2/1	Very dark olive black peaty mud, less compact
Note: bottom 10 cm not in		80-85	N6 to 5 B 7/1	Sand lenses at 81-82 cm, interbedded w/ peaty mud layers
radiograph		85-86.5	N2	Very dark gray, peaty mud

	Site # 18, Top section; Wire Pond, Isle of Wight Bay Comments: H ₂ S odor; distinct banding		Total length- 143 cm	n Date collected- 5/2/01 Date processed- 5/14/01
Radiograph 0-70 cm	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
		0-24.5	(color not true; turned anoxic in bag	Active root zone; grayish brown silty mud with abundant roots
		24.5-63	5 YR 3 /4 5 Y 4/1	Active root zone; mottled moderate brown to olive gray silty mud with abundant roots
		63-68	5 YR 2/1	Brownish black muddy peat

Site # 18, Bottom section; Wire Pond, Isle of Wight Bay Total length- 143 cm Date collected- 5/2/01 Date processed- 5/14/01						
	S odor; distinct bandii	0				
Radiograph 70-143 cm	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description		
		68-96	5 Y 3/2 5 G 4/1	Subtlety banded olive gray to greenish gray clayey mud, roots and peat; very clayey at bottom of section		
	100-	96-103	5 YR 2/2	Alternate layers of dusky brown peaty mud, dusky yellow brown mud with some plant material, and olive gray mud with little plant/peat		
		103-107	10 YR 2/2	gray mud with intre plant pear		
	110	107-118	5 YR 2/2			
	120	118-122	5 Y 3/2			
	130-	122-137	5 YR 2/1	Brownish black muddy peat		
	140	137-143	5 Y 3/2	Olive gray mud with some peat pockets		

Site #19 Key	Site #19 Keyser Pt., Isle of Wight Bay,Total Length- 59 cm			Date collected- 5/3/01 Date processes- 9/10/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
		0-15	5 Y 4/1; 5 YR 4/1; 10 R 3 /4	Active root zone; mottled olive gray mud, very sandy with inclusion's of large (>5 cm) sand pockets, light brown, gritty, lots of mica, highly oxidized around some root paths (dark reddish brown); abundant roots, plant material
	5 7	15-19.5	5 GY 41	Active root zone; very compact, greenish gray mud, micacous, faint laminations, abundant roots and root material
To and	203	19.5-21.5	5 Y 3/1	?Active root zone; olive gray mud, laminated, roots
		21.5-23.5	5 Y 6/1	
	10 11 d 2 13 14 15 g 6 17	23.5-46.5	5 G 4/1; 5 YR 4/1; 5 B 4/1	Alternating dark olive gray to light olive gray mud; highly laminated, compact, silty mud, micaceous layers range from 1 cm to 3 cm, sand lenses, root material
	18 19 82	46.5-51.5	5 Y 2/1	Very sharp change to olive black peaty mud
A	0 21 22 23	51.5-59	5 YR 2/1	Sharp change to very dark brownish black peat, with some clastics

Site # 22 Isle o	of Wight, Assawoman	n Bay To	tal length- 58.5 c	m Date collected- 7/17/01 Date processed- 9/13/01
Radiograph	Photograph	Interval (cm)	Color (Munsell Color Standard, GSA, 1991)	Description
	Cm 0	0-2	5 G 2/1; 5 Y 3/1	Active root zone; top 2 cm mottled greenish black and dark olive gray mud with abundant plant and root material
		2-22	5 Y 4/1	Active root zone; dark olive gray mud with abundant plant and root material
	10 11 <u>3(</u> 13 13 15	22-42	5 GY 3/1	Active root zone; dark greenish gray silty mud with abundant plant material; radiograph indicates slightly denser layer at 36 cm which is not visible w/eye
	40	42-48.5	5 YR 3/1	Brownish gray peat with mud, spongy
	13 57 21 22 23	48.5-58.5	5 Y 3/1	Olive gray peaty mud, not as peaty as overlying section

APPENDIX B Quality Assurance/Quality Control

Textural Analyses

The techniques used to determine grain size composition are based on traditional analytical methods developed for the sedimentology lab. Still, some analytical error is inherent in the methodology. For example, results can be affected by the technician's level of skill and/or changes in laboratory conditions, such as sudden temperature changes. Furthermore, no standard reference material includes the broad range of particle sizes and shapes contained in natural sediment. To maximize the consistency of textural analyses, several checks are used to monitor results. Calculated gravel, sand, silt, and clay percentages are checked against (1) field descriptions of the samples, (2) calculated water content, and (3) calculated weight loss of the sample during processing. These comparisons are made to determine if the grain size composition matches the visual description of the sample and/or falls within an expected Shepard's (1954) class with respect to water content and weight loss. Any discrepancy is flagged, and the results are reviewed to determine if reanalysis is warranted.

Specifically, the criteria for each of the internal checks are as follows:

- (1) Calculated gravel, sand, silt, and clay percentages and Shepard's classification are compared with the field description of the sediment. If the results seem to indicate a very different sample from the one described, then the sample is reanalyzed.
- (2) Gravel, sand, silt, and clay percentages are compared to calculated water content. For each of the sediment types, Table B-1 lists the typical mean and range of values for water content, based on bottom sediments collected in Isle of Wight and Assawoman Bays. The mean and range of values for marsh sediments collected as part of this study fall within expected values for water content (Table B-2).
- (3) Sample loss (% dry weight) during cleaning is calculated for each sample. The calculated water content, which is usually measured shortly after the sample is collected, is used to determine weight loss. If the sediment dries out, even slightly, before it is sub-sampled for textural analysis, then weight loss is underestimated and, in some instances, negative. The weight lost during the cleaning process is related to sediment type, that is, grain size composition, as well as to the organic and/or carbonate content of the sediment. Organic-rich, fine-grained bay bottom sediments (i.e., silty clay and clayey silt) may lose up to 30% dry weight during cleaning (Table B-1). Sand, which is fairly clean, usually losses the least weight and often shows a negative weight loss, due to errors inherent in water content determinations. In this study, many of the core sediments lost over 50% dry weight during the cleaning process due to the very high amount of plant material (Table B-2).

Table B-1. Mean and range of water content and calculated weight loss after cleaning for each sediment type (Shepard's (1954) classification), based on sediments collected in Isle of Wight and Assawoman Bays (Wells and others, 1994). Means are rounded to the nearest whole percentage.

	Water content	(% wet weight)	Weight loss (% dry weight)			
Sediment type	Mean	Range	Mean	Range		
Sand	22	17 - 27	1	-4 - 6		
Silty-Sand	39	31 - 47	7	2 - 12		
Clayey-Sand	47	41 - 53	3	0 -6		
Sandy-Silt	48	42 - 54	13	5 - 21		
Clayey-Silt	60	53 - 67	20	13 - 27		
Silty-Clay	70	67 - 73	28	23 - 33		
Sand-Silt-Clay	56	49 - 63	13	2 - 24		

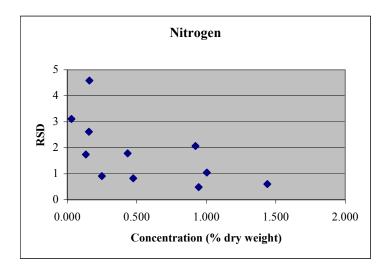
Table B-2. Mean and range of water content and calculated weight loss after cleaning for each sediment type (Shepard's (1954) classification), based on sediments collected for this study. Means and ranges are rounded to the nearest whole percentage. Blank range values indicate that only a single sample represented the sediment class.

Sediment type	Water content	(% wet weight)	Weight loss (% dry weight)			
seament type	Mean	Range	Mean	Range		
Sand	21	4 - 37	4	-3 - 10		
Silty-Sand	42	38 - 51	17	6 - 27		
Clayey-Sand	51		26			
Sandy-Silt	46		11			
Clayey-Silt	70	52 - 86	39	19 - 66		
Silty-Clay	78	69 - 86	55	23 - 72		
Sand-Silt-Clay	62	23 - 87	36	5 - 69		

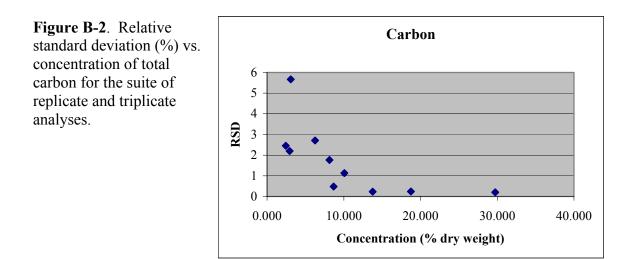
For this study, less than 5% of the sediment samples were flagged for repeated textural analyses. Table B-3 lists the results of the replicated analyses. Results of all duplicate analyses yielded sand, silt, and clay percentages that fell within 5% of their first analyses.

Table	B-3 . C	ompariso	n of res	ults of r	eplicate textura	al analys	ses of s	selected	l core samples
Sample ID	% Water	% Sand	% Silt	% Clay	Shepard's classification	Δ Sand	∆ Silt	Δ Clay	Comments
13-20	53.14	19.64	51.05	29.31	Clayey-Silt				Change in classification
13-2 R	53.14	20.06	51.82	28.13	Sand-Silt-Clay	0.32	0.77		as a result of slight change in % sand
13-3	49.31	34.35	40.77	24.88	Sand-Silt-Clay	0.50	0.26	0.05	No change in
13-3 R	49.31	34.94	41.13	23.93	Sand-Silt-Clay	0.59	0.36	0.95	classification
13-4	62.45	17.21	45.13	37.67	Clayey-Silt	0.45	0.45 0.56		No change in
13-4 R	62.45	17.66	45.69	36.65	Clayey-Silt	0.45	0.56	0.02	classification

Nitrogen, Carbon and Sulfur Analyses


As part of MGS's QA/QC protocol, several standard reference materials (SRMs) are used as secondary standards and run every 6 to 7 samples (unknowns). Table B-4 compares MGS results with certified SRM values for total carbon, nitrogen, and sulfur. The detection limit for this method is 0.001% for all three elements. There is excellent agreement between SRM values and MGS's results.

In addition to SRMs, replicate analyses were done on every seventh sediment sample. The relative standard deviation for the replicate analyses may be used to determine analytical variability of the method with respect to concentration. The relative standard deviation plots for total nitrogen and carbon show that variability decreases with increasing concentrations (Figs. B-1 and B-2).


Table B-4. Results of nitrogen, carbon, and sulfur analyses of NIST SRM 1646 (Estuarine Sediment) and National Research Council of Canada SRM PACS-1 (Marine Sediment) compared to the certified or known values. MGS values were obtained by averaging the results of all SRM analyses run during this study. All samples were analyzed over a two-week period.

	NIST SRM	I 1646 – Estua	rine Mud	PACS-1 – Marine Sediment				
Component	Certified values*	MGS results		Certified values	MGS results			
	Value ±Std Dev	Mean value ±Std Dev	% Recovery	Value ±Std Dev	Mean value ±Std Dev	% Recovery		
		0.17±			$0.276 \pm$			
Nitrogen	0.180	0.00	96.96	0.260	0.011	106.14		
		1.64±			$3.578 \pm$			
Carbon	1.720	0.05	95.21	3.690	0.097	96.96		
		1.02 ±			1.252 ±			
Sulfur	0.960	0.08	106.25	1.320	0.046	94.85		

* The value for carbon is certified by NIST. The sulfur value is the non-certified value reported by NIST. The NIST did not report nitrogen for the SRM. The value for nitrogen was obtained from repeated analyses in-house and by other laboratories (Haake Buchler Labs and the U.S. Dept. of Agriculture).

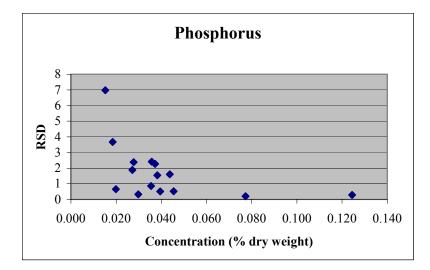


Figure B-1. Relative standard deviation (%) vs. concentration of total nitrogen for the suite of replicate and triplicate analyses.

Metal Analyses

For elemental analyses completed by Activation Laboratories, Ltd. (Actlabs), quality assurance was confirmed in the following manner. The set of sediment samples sent to Actlabs contained a series of SRMs and replicate samples, the identities of which were not revealed to Actlabs. MGS also requested that Actlabs run a reagent blank every 20 samples. The three SRMs used were (1) NIST-SRM #1646a – Estuarine Sediment, (2) NIST-SRM #2704 – Buffalo River Sediment, and (3) National Research Council of Canada PACS-2 – Marine Sediment. These SRMs closely resembled the types of sediments being analyzed (i.e., fine-grained marine sediment). Results of the analyses of the three standard reference materials are compared to the certified values in Table B-5. As part of their internal QA/QC protocol, Actlabs analyzed a suite of standards used by the U.S. Geological Survey. Those results are presented in Table B-6. Actlabs also ran a replicate of every tenth sample; independent of the blind replicates that MGS included. As a result, some samples were analyzed three times. The relative standard deviation for the replicate and triplicate analyses were calculated and used to determine analytical variability with respect to concentration. A plot of the relative standard deviation (RSD) vs. the concentration of total phosphorus shows that variability decreases with increasing concentration (Fig. B-3).

Figure B-3. Relative standard deviation (%) vs. concentration of total phosphorus for the suite of replicate and triplicate analyses.

	rtified values. ' NIST 1646	a — Estuarine Mud			– Buffalo River Mu	d	PACS-2 – Marine Mud			
Element	Certified values	Actlabs Res	ults	Certified values Actlabs Results			Certified values	sults		
	Value ±Std dev	Value ±Std dev	% Recovery	Value ±Std dev	Value ±Std dev	% Recovery	Value ±Std dev		% Recovery	
Ag (ppm)	(<0.3)	0.4 ± 0.1	119.9	NA	1.00 ± 0.08		1.22 ± 0.14	1.27 ± 0.11	103.7	
Al (%)	2.297 ± 0.018	2.162 ± 0.063	94.1	6.11 ± 0.16	5.34 ± 0.29	87.4	6.62 ± 0.32	10.02 ± 1.72	151.4	
Be (ppm)	(<1)	-1		NA	1.87 ± 0.06		1 ± 0.2	1.19 ± 0.03	118.9	
Bi (ppm)	NA	-2		NA	-2.00		NA	-2 ± 0		
Ca (%)	0.519 ± 0.020	0.541 ± 0.01	104.2	2.6 ± 0.03	2.72 ± 0.10	104.6	1.965 ± 0.18	2.15 ± 0.05	109.3	
Cd (ppm)	0.148 ± 0.007	-0.30		3.45 ± 0.22	1.98 ± 0.75	57.5	2.11 ± 0.15	1.11 ± 0.16	52.6	
Co (ppm)	(5)	4.67 ± 0.48	93.4	14 ± 0.6	13 ± 0.44	93.6	11.5 ± 0.3	10.96 ± 0.52	95.3	
Cu (ppm)	10.01 ± 0.34	15.94 ± 6.66	159.3	98.6 ± 5	97.79 ± 5	99.2	$310 \ \pm 12$	305 ± 12	98.5	
Fe (%)	2.008 ± 0.039	1.955 ± 0.055	97.4	4.11 ± 0.1	4.09 ± 0.16	99.5	4.09 ± 0.06	4.14 ± 0.13	101.2	
K (%)	0.864 ± 0.016	0.809 ± 0.022	93.6	2 ± 0.04	1.88 ± 0.09	94.2	1.23 ± 0.05	1.53 ± 0.14	124.3	
Mg (%)	0.388 ± 0.009	0.441 ± 0.012	113.7	1.2 ± 0.02	1.30 ± 0.05	108.3	1.472 ± 0.133	1.98 ± 0.19	134.6	
Mn (ppm)	234 ± 2.8	233 ± 3.49	99.5	555 ± 19	580 ± 25	104.5	440 ± 19	430 ± 15	97.6	
Mo (ppm)	(1.8)	2.28 ± 0.53	126.7	NA	5.01 ± 1		5.43 ± 0.28	6.35 ± 0.92	116.9	
Na (%)	0.741 ± 0.017	0.766 ± 0.027	103.4	0.547 ± 0.014	0.626 ± 0.039	114.5	3.71 ± 0.185	3.62 ± 0.19	97.7	
Ni (ppm)	(23)	23 ± 1.06	99.3	44.1 ± 3	43.89 ± 2	99.5	39.5 ± 2.3	40.8 ± 1.5	103.2	
P (ppm)	270 ± 10	250 ± 7.7	92.5	998 ± 28	884 ± 31	88.5	960 ± 44	945 ± 40	98.5	
Pb (ppm)	11.7 ± 1.2	12.54 ± 1.04	107.2	161 ± 17	168.59 ± 7	104.7	183 ± 8	185 ± 5	100.9	
S (%)	(0.352)	0.39 ± 0.01	109.9	0.397 ± 0.004	0.419 ± 0.018	105.6	1.29 ± 0.13	1.41 ± 0.03	109.6	
Sr (ppm)	(68)	69 ± 1.78	100.8	(130)	133 ± 6	102.4	276 ± 30	289 ± 10	104.6	
Ti (%)	0.456 ± 0.021	0.395 ± 0.015	86.6	0.457 ± 0.018	0.398 ± 0.028	87.1	0.443 ± 0.032	0.42 ± 0.01	95.9	
V (ppm)	44.84 ± 0.76	40.40 ± 3.08	90.1	95 ± 4	99 ± 3	104.7	133 ± 5	139 ± 5	104.3	
Y (ppm)	NA	9.91 ± 0.33		(2.8)	23.49 ± 1.18	838.8	NA	25.23 ± 4.52		
Zn (ppm)	48.9 ± 4.6	59.61 ± 14.20	121.9	438 ± 12	405 ± 9	92.4	364 ± 23	349 ± 12	95.9	

Table B-6. (underlined ar	-						-			-		•				
Element	-	G-2 (granite)		SDC-1 (mica schist)		DNC-1 (dolerite))-1 shale)		GXR-6 (soil)		GXR-2 (soil)		GXR-1 (jasperoid)		R-4 er mill nd)
	Certified values	Actlab results	Certified value	Actlab results	Certified value	Actlab results	Certified value	Actlab results	Certified value	Actlab results	Certified value	Actlab results	Certified value	Actlab results	Certified value	Actlab results
Ag (ppm)	0.04	-0.3	0.041	-0.3	(.027	-0.3	<u>0.134</u>	0.5	1.3	0.7	17	16.3	31	30.6	4	3.6
Al (%)	<u>8.147</u>	5.82	8.338	6.02	<u>9.687</u>	9.72	7.24	5.69	17.68	9.03	16.46	6.90	3.52	1.80	7.20	6.09
Be (ppm)	2.5	2	<u>3.0</u>	3	1	-1	<u>1.84</u>	2	1.4	1	1.7	2	1.22	1	1.9	2
Bi (ppm)	<u>0.037</u>	-2	0.26	-2	(.02	-2	0.37	-2	(.29	-2	(.69	-2	1380	1518	19	35
Ca (%)	<u>1.401</u>	1.17	<u>1.001</u>	0.94	<u>8.055</u>	8.08	<u>1.87</u>	1.80	0.179	0.15	0.929	0.70	0.958	0.94	1.01	1.05
Cd (ppm)	<u>0.016</u>	-0.3	(.08	-0.3	(.182	-0.3	<u>0.14</u>	-0.3	(1	-0.3	4.1	2.0	3.3	1.8	(.86	-0.3
Co (ppm)	<u>4.6</u>	3	<u>17.9</u>	18	<u>54.7</u>	58	<u>10.5</u>	11	13.8	12	8.6	8	8.2	7	14.6	15
Cu (ppm)	11	11	<u>30</u>	29	<u>96</u>	124	<u>28.7</u>	39	66	66	76	76	1110	1210	6520	6464
Fe (%)	<u>1.86</u>	1.75	<u>4.825</u>	4.82	<u>6.94</u>	7.23	<u>3.59</u>	3.48	5.58	5.09	1.86	1.82	23.64	25.74	3.09	3.15
K (%)	<u>3.718</u>	3.45	<u>2.722</u>	2.53	<u>0.19</u>	0.25	2.30	2.11	1.87	1.43	1.37	1.13	0.05	0.05	4.01	3.97
Mg (%)	0.452	0.42	<u>1.019</u>	1.03	<u>6.06</u>	6.99	<u>1.64</u>	1.70	0.61	0.47	0.85	0.74	0.22	0.22	1.66	1.88
Mn (ppm)	232	246	<u>883</u>	866	<u>1154</u>	1122	410	385	1008	920	1008	791	853	979	155	147
Mo (ppm)	(1.1	1	<u>(.25</u>	3	(.7	1	<u>1.37</u>	1	2.4	3	(2.1	3	18	21	310	308
Ni (ppm)	(5	3	38	34	<u>247</u>	251	<u>27</u>	26	27	24	21	19	41	42	42	39
Na (%)	<u>3.027</u>	2.98	1.521	1.57	<u>1.39</u>	1.61	<u>0.67</u>	0.69	0.1	0.10	0.56	0.54	0.05	0.05	0.56	0.55
P (%)	<u>0.061</u>	0.050	<u>0.069</u>	0.056	0.037	0.025	<u>0.090</u>	0.077	0.035	0.057	0.105	0.057	0.065	0.060	0.120	0.124
Pb (ppm)	<u>30</u>	31	<u>25</u>	22	6.3	10	<u>31</u>	32	101	97	690	699	730	802	52	53
S (%)	(0.01	0.016	0.065	0.065	(0.039	0.067	0.063	0.067	0.016	0.011	0.031	0.027	0.257	0.281	1.770	1.995
Sr (ppm)	<u>478</u>	430	<u>183</u>	173	<u>145</u>	147	<u>174</u>	161	35	35	160	136	275	324	221	232
Ti (%)	0.288	0.29	<u>0.606</u>	0.58	0.287	0.29	<u>0.38</u>	0.34	0.498	0.48	0.3	0.29	0.036	0.02	0.29	0.26
V (ppm)	<u>36</u>	38	<u>102</u>	103	<u>148</u>	159	<u>131</u>	141	186	198	52	55	80	91	87	96
Y (ppm)	<u>11</u>	6	<u>40</u>	24	<u>18</u>	19	<u>26</u>	17	14	5	17	9	32	35	14	13
Zn (ppm)	<u>86</u>	86	<u>103</u>	103	<u>66</u>	66	<u>103</u>	99	118	125	530	509	760	739	73	79

APPENDIX C Data Tables

Sample ID	Sediment interval: Core samples - depth below marsh surface (cm) Bluff sample - height above shoreline (m)		Bulk density (measured)			Bulk con	Core compaction	Total solids			
Sample 1D	Upper interval	Lower interval	Wet (g/cm ³)	Dry (g/cm ³)	Plant (% >14 mesh)	Clastic (%)	Reactive organics/ carbonates (%)	Total organics	factor	(Kg/m ³)	
1-1	0.0	12.7	0.92	0.24	20.96	50.15	28.89	49.85	1	239.90	
1-2	12.7	27.0	0.95	0.22	27.01	31.49	41.50	68.51	0.89	192.18	
1-3	27.0	38.0	0.85	0.12	26.74	28.52	44.73	71.48	0.89	105.09	
1-4	38.0	53.3	0.85	0.18	25.43	40.03	34.53	59.97	0.89	162.44	
6-1	0.0	27.5	1.03	0.27	20.37	37.82	41.81	62.18	1	273.07	
6-2	27.5	44.0	1.03	0.21	26.56	40.90	32.54	59.10	0.85	175.84	
6-3	44.0	61.0	1.07	0.22	26.56	34.08	39.35	65.92	0.85	190.95	
8-1	0.0	14.5	1.52	0.95	10.50	79.51	9.99	20.49	0.94	890.25	
8-2	14.5	29.0	1.29	0.55	5.02	74.86	20.12	25.14	0.94	520.90	
8-3	29.0	45.0	1.10	0.31	8.63	55.17	36.19	44.83	0.94	286.97	
8-4	45.0	63.5	1.09	0.27	3.78	57.71	38.51	42.29	0.94	250.18	
7-1	0.0	20.0	1.02	0.26	27.62	44.19	28.19	55.81	1	257.92	
7-2	20.0	40.0	0.98	0.16	32.33	28.15	39.52	71.85	0.88	137.04	
7-3	40.0	60.0	0.97	0.18	7.67	41.86	50.47	58.14	0.88	158.93	
7-4	60.0	78.0	1.02	0.17	3.38	41.26	55.36	58.74	0.88	148.02	
7-5	78.0	95.0	1.01	0.15	8.53	33.03	58.43	66.97	0.88	134.46	
9-1 #1	0.0	19.0	1.49	0.88	3.26	93.88	2.86	6.12	1	878.89	
9-2	19.0	39.0	1.22	0.48	9.81	70.87	19.33	29.13	0.94	452.03	
9-3	39.0	59.0	1.02	0.23	20.25	38.91	40.84	61.09	0.94	217.02	

Sample ID	Sediment interval: Core samples - depth below marsh surface (cm) Bluff sample - height above shoreline (m)		Bulk density (measured)			Bulk con	Core compaction	Total solids			
Sample 1D	Upper interval	Lower interval	Wet (g/cm ³)	Dry (g/cm ³)	Plant (% >14 mesh)	Clastic (%)	Reactive organics/ carbonates (%)	Total organics	factor	(Kg/m ³)	
9-4	59.0	76.0	1.13	0.35	1.17	72.66	26.17	27.34	0.94	330.57	
10-1	0.0	23.5	1.27	0.51	11.51	65.88	22.62	34.12	1	505.40	
10-2	23.5	35.5	1.19	0.39	4.15	74.77	21.08	25.23	0.96	376.82	
10-3	35.5	48.5	1.14	0.33	4.66	68.86	26.49	31.14	0.96	316.14	
11-1	0.0	19.0	1.36	0.67	10.94	72.99	16.07	27.01	1	668.60	
11-2	19.0	36.0	1.10	0.40	12.70	60.94	26.36	39.06	0.86	341.12	
11-3	36.0	47.0	1.00	0.17	24.28	34.08	41.64	65.92	0.86	146.00	
11-4	47.0	60.0	0.97	0.17	6.26	55.83	37.90	44.17	0.86	146.08	
12-1 #1	0.0	21.0	1.18	0.46	9.94	67.95	22.12	32.05	1	464.93	
12-2	21.0	38.0	1.05	0.22	24.77	38.22	37.02	61.78	1	221.98	
12-3	38.0	52.0	0.93	0.13	13.88	36.30	49.82	63.70	1	131.68	
12-4	52.0	67.5	1.02	0.21	6.14	62.96	30.90	37.04	1	210.75	
13-1	0.0	21.0	1.29	0.92	2.84	89.94	7.22	10.06	1	920.29	
13-2	21.0	35.5	1.34	0.63	12.11	59.63	28.27	40.37	0.87	544.64	
13B-1	0.0	8.0	1.54	1.03	3.84	90.54	5.63	9.46	0.95	981.41	
13B-2	8.0	20.0	1.48	0.95	2.88	91.54	5.58	8.46	0.95	899.48	
13B-3	20.0	35.0	1.36	0.69	5.95	77.21	16.84	22.79	0.95	654.88	
13B-4	35.0	46.5	1.20	0.45	10.26	78.77	10.97	21.23	0.95	429.13	
13B-5	46.5	70.5	1.03	0.23	16.46	44.13	39.41	55.87	0.95	220.30	
14-1	0.0	17.5	1.24	0.58	13.30	60.55	26.14	39.45	1	577.33	
14-2	17.5	26.0	1.02	0.28	16.91	50.91	32.18	49.09	1	278.28	

Sample ID	Sediment interval: Core samples - depth below marsh surface (cm) Bluff sample - height above shoreline (m)		Bulk density (measured)		5 m - 5, em	Bulk con	Core compaction	Total solids		
Sample 15	Upper interval	Lower interval	Wet (g/cm ³)	Dry (g/cm ³)	Plant (% >14 mesh)	Clastic (%)	Reactive organics/ carbonates (%)	Total organics	factor	(Kg/m ³)
14-3	26.0	45.5	1.19	0.43	14.20	56.43	29.37	43.57	1	430.21
14B-1	0.0	16.0	1.30	0.61	11.75	76.02	12.23	23.98	0.85	516.60
14B-2	16.0	28.5	1.31	0.58	4.76	80.26	14.99	19.74	0.85	491.31
14B-3	28.5	46.5	1.12	0.29	17.55	61.98	20.46	38.02	0.85	249.66
14B-4	46.5	64.5	1.20	0.37	5.57	77.04	17.39	22.96	0.85	314.85
14B-5	64.5	75.5	1.39	0.67	2.11	78.24	19.65	21.76	0.85	570.05
14B-6	75.5	86.5	1.19	0.42	4.19	80.88	14.93	19.12	0.85	354.33
18-0	0.0	24.5	1.00	0.43	11.34	68.07	20.59	31.93	1	434.80
18-1	24.5	37.0	0.70	0.17	13.88	57.92	28.19	42.08	0.97	163.79
18-2	37.0	62.0	0.99	0.31	4.98	67.39	27.62	32.61	0.97	299.15
18-3	62.0	87.0	1.14	0.41	2.09	79.93	17.98	20.07	0.97	395.29
18-4	87.0	112.0	1.05	0.26	2.68	48.18	49.14	51.82	0.97	247.93
18-5	112.0	143.0	1.24	0.51	1.65	73.90	24.45	26.10	0.97	494.57
19-1	0.0	17.0	1.58	1.01	2.73	89.91	7.37	10.09	1	1010.00
19-2	17.0	30.0	1.52	0.93	2.27	85.93	11.80	14.07	1	927.95
19-3	30.0	46.5	1.46	0.79	2.22	89.39	8.39	10.61	1	785.65
19-4	46.5	57.5	1.11	0.28	22.63	51.60	25.77	48.40	1	284.80
22-1	0.0	23.0	1.22	0.37	18.14	63.03	18.83	36.97	1	369.33
22-2	23.0	42.0	1.12	0.31	7.82	71.55	20.63	28.45	0.85	260.96
22-3	42.0	58.0	0.98	0.17	15.83	41.89	42.27	58.11	0.85	142.39
Site 3-T	2.8	0.4	1.29	1.24	0.00	97.34	2.66	2.66	1	1238.92

Sample ID	Sediment interval: Core samples - depth below marsh surface (cm) Bluff sample - height above shoreline (m)		Bulk density (measured)		<u>B'in - B'ein</u>	Bulk con	Core compaction	Total solids		
Sample ID	Upper interval	Lower interval	Wet (g/cm ³)	Dry (g/cm ³)	Plant (% >14 mesh)	Clastic (%)	Reactive organics/ carbonates (%)	Total organics	factor	(Kg/m ³)
Site 3-B	0.4	0.0	1.84	1.43	0.00	94.91	5.09	5.09	1	1434.43
Site 4-T	2.6	1.3	1.43	1.35	0.00	97.58	2.42	2.42	1	1346.65
Site 4-B	1.3	0.0	1.65	1.54	0.00	97.92	2.08	2.08	1	1538.04
Site 5	2.1	0.0	1.44	1.34	0.00	98.07	1.93	1.93	1	1336.30
1-Off					0.00	56.10	43.90	43.90		
3-Beach					0.00	98.99	1.01	1.01		
3-Off					0.00	96.03	3.97	3.97		
4-Beach					0.00	96.52	3.48	3.48		
5-Beach					0.00	97.04	2.96	2.96		
6-Off					0.00	39.98	60.02	60.02		
7-Off					0.00	32.60	67.40	67.40		
8-Off					0.00	73.60	26.40	26.40		
9-Off					0.00	61.83	38.17	38.17		
10-Off					0.00	51.98	48.02	48.02		
11-Off					0.00	64.86	35.14	35.14		
12-Off					0.00	30.99	69.01	69.01		
13-Off					0.00	100.00	0.00	0.00		
14A-Off					0.00	96.21	3.79	3.79		
22-Off					0.00	50.14	49.86	49.86		

Table C-1. Sample data: physical properties (cont.). Off denotes offshore grab sample. Sites 3, 4, and 5 are bluff sites: T and B
denoting top and bottom of bluff. All other sites are coring sites (marsh). Bulk density calculated using Bennett and Lambert (1971)
method.

Sample ID	Upper interval (cm)	Lower interval (cm)	H ₂ 0 (% wet weight)	Bulk density (Bennett & Lambert) (g/cm ³)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Shepard's (1954) classification
1-1	0.00	12.70	73.99	1.20	0.00	24.44	26.17	49.39	Sand-Silt-Clay
1-2	12.70	27.00	77.24	1.17	0.00	9.24	39.45	51.30	Silty-Clay
1-3	27.00	38.00	86.15	1.10	0.00	0.98	29.10	69.92	Silty-Clay
1-4	38.00	53.30	78.48	1.16	0.00	2.31	44.98	52.71	Silty-Clay
6-1	0.00	27.50	73.48	1.20	0.00	8.70	37.36	53.94	Silty-Clay
6-2	27.50	44.00	79.90	1.15	0.00	10.39	46.93	42.68	Clayey-Silt
6-3	44.00	61.00	78.93	1.15	0.00	2.27	49.16	48.57	Clayey-Silt
8-1	0.00	14.50	37.85	1.65	0.00	74.56	16.52	8.92	Silty-Sand
8-2	14.50	29.00	57.08	1.37	0.00	29.10	40.27	30.62	Sand-Silt-Clay
8-3	29.00	45.00	72.29	1.21	0.00	1.03	52.82	46.15	Clayey-Silt
8-4	45.00	63.50	75.60	1.18	0.00	8.12	40.95	50.93	Silty-Clay
7-1	0.00	20.00	74.70	1.19	0.00	7.24	42.95	49.81	Silty-Clay
7-2	20.00	40.00	84.07	1.11	0.00	1.97	44.90	53.13	Silty-Clay
7-3	40.00	60.00	81.36	1.13	0.00	4.02	50.21	45.77	Clayey-Silt
7-4	60.00	78.00	83.49	1.12	0.00	4.10	54.74	41.17	Clayey-Silt
7-5	78.00	95.00	84.93	1.11	0.00	0.15	44.01	55.84	Silty-Clay
9-1 #1	0.00	19.00	41.18	1.59	0.00	73.06	15.95	11.00	Silty-Sand
9-2	19.00	39.00	60.54	1.33	0.00	10.31	51.25	38.44	Clayey-Silt
9-3	39.00	59.00	77.38	1.17	0.00	5.55	48.53	45.92	Clayey-Silt
9-4	59.00	76.00	68.83	1.25	0.00	10.18	44.19	45.62	Silty-Clay
10-1	0.00	23.50	60.10	1.34	0.00	16.45	49.25	34.31	Clayey-Silt
10-2	23.50	35.50	67.02	1.26	0.00	0.78	54.02	45.20	Clayey-Silt
10-3	35.50	48.50	71.13	1.22	0.00	0.28	50.53	49.19	Clayey-Silt
11-1	0.00	19.00	50.88	1.45	0.00	61.93	22.02	16.06	Silty-Sand
11-2	19.00	36.00	63.87	1.30	0.00	3.91	54.69	41.40	Clayey-Silt

Table C-1. Sa	ample data:	physical pro	perties (co	ont.). Off de	enotes offshore	e grab sam	ple. Sites 3, 4	, and 5 are bluff	sites: T and B
denoting top a	and bottom of	of bluff. All	other sites	are coring	sites (marsh).	Bulk dens	ity calculated	using Bennett a	nd Lambert (1971)
method.									

Sample ID	Upper interval (cm)	Lower interval (cm)	H ₂ 0 (% wet weight)	Bulk density (Bennett & Lambert) (g/cm ³)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Shepard's (1954) classification
11-3	36.00	47.00	83.00	1.12	0.00	0.58	45.53	53.89	Silty-Clay
11-4	47.00	60.00	82.53	1.12	0.00	4.23	47.14	48.63	Silty-Clay
12-1 #1	0.00	21.00	60.70	1.33	0.00	12.52	44.97	42.51	Clayey-Silt
12-2	21.00	38.00	78.95	1.15	0.00	0.82	42.93	56.25	Silty-Clay
12-3	38.00	52.00	85.79	1.10	0.00	4.37	50.91	44.73	Clayey-Silt
12-4	52.00	67.50	79.33	1.15	0.00	6.55	50.72	42.72	Clayey-Silt
13-1	0.00	21.00	28.85	1.82	0.00	75.06	17.24	7.71	Sand
13-2	21.00	35.50	53.14	1.42	0.00	19.64	51.05	29.31	Clayey-Silt
13B-1	0.00	8.00	33.13	1.73	0.00	80.39	13.54	6.07	Sand
13B-2	8.00	20.00	36.13	1.68	0.00	76.82	14.96	8.22	Sand
13B-3	20.00	35.00	49.31	1.47	0.00	34.35	40.77	24.88	Sand-Silt-Clay
13B-4	35.00	46.50	62.45	1.31	0.00	17.21	45.13	37.67	Clayey-Silt
13B-5	46.50	70.50	77.48	1.17	0.00	4.91	46.35	48.74	Silty-Clay
14-1	0.00	17.50	53.42	1.42	0.00	43.75	29.33	26.92	Sand-Silt-Clay
14-2	17.50	26.00	72.80	1.21	0.00	8.15	44.72	47.13	Silty-Clay
14-3	26.00	45.50	63.80	1.30	0.00	47.68	27.00	25.32	Sand-Silt-Clay
14B-1	0.00	16.00	53.23	1.42	0.00	48.69	28.14	23.17	Sand-Silt-Clay
14B-2	16.00	28.50	55.90	1.39	0.00	30.42	34.43	35.15	Sand-Silt-Clay
14B-3	28.50	46.50	73.75	1.20	0.00	8.39	40.64	50.97	Silty-Clay
14B-4	46.50	64.50	69.14	1.24	0.00	11.96	42.21	45.82	Silty-Clay
14B-5	64.50	75.50	51.81	1.44	0.00	2.01	55.67	42.32	Clayey-Silt
14B-6	75.50	86.50	64.88	1.29	0.00	2.97	61.72	35.31	Clayey-Silt
18-0	0.00	24.50	56.69	1.38	0.00	16.48	52.25	31.26	Clayey-Silt
18-1	24.50	37.00	75.79	1.18	0.00	15.63	50.44	33.93	Clayey-Silt
18-2	37.00	62.00	68.98	1.24	0.00	13.08	50.75	36.17	Clayey-Silt
18-3	62.00	87.00	64.36	1.29	0.00	1.25	61.39	37.35	Clayey-Silt

Table C-1. Sample data: physical properties (cont.). Off denotes offshore grab sample. Sites 3, 4, and 5 are bluff sites: T and B
denoting top and bottom of bluff. All other sites are coring sites (marsh). Bulk density calculated using Bennett and Lambert (1971)
method.

Sample ID	Upper interval (cm)	Lower interval (cm)	H ₂ 0 (% wet weight)	Bulk density (Bennett & Lambert) (g/cm ³)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Shepard's (1954) classification
18-4	87.00	112.00	75.55	1.18	0.00	1.07	50.62	48.31	Clayey-Silt
18-5	112.00	143.00	58.75	1.35	0.00	44.90	25.65	29.45	Sand-Silt-Clay
19-1	0.00	17.00	35.91	1.68	0.00	75.25	17.40	7.35	Sand
19-2	17.00	30.00	38.89	1.63	0.00	60.43	27.19	12.38	Silty-Sand
19-3	30.00	46.50	46.25	1.51	0.00	39.61	45.37	15.03	Sandy-Silt
19-4	46.50	57.50	74.36	1.19	0.00	24.59	55.02	20.40	Sand-Silt-Clay
22-1	0.00	23.00	69.74	1.24	0.00	0.99	54.90	44.11	Clayey-Silt
22-2	23.00	42.00	72.50	1.21	0.00	0.61	51.26	48.13	Clayey-Silt
22-3	42.00	58.00	82.84	1.12	0.00	2.33	46.56	51.12	Silty-Clay
Site 3-T	2.79	0.42	4.06	2.54	0.00	90.60	7.22	2.18	Sand
Site 3-B	0.42	0.00	22.71	1.96	0.00	47.46	22.53	30.02	Sand-Silt-Clay
Site 4-T	2.60	1.30	5.03	2.50	3.62	77.78	11.31	7.29	Sand
Site 4-B	1.30	0.00	6.44	2.45	4.98	86.35	2.54	6.13	Sand
Site 5	2.12	0.00	6.75	2.44	1.45	83.39	5.99	9.18	Sand
1-Off			77.87	1.16	0.00	41.83	35.92	22.25	Sand-Silt-Clay
3-Beach			17.24	2.10	0.00	98.82	1.18	0.00	Sand
3-Off			21.48	1.99	0.00	96.45	2.15	1.40	Sand
4-Beach			20.88	2.00	0.71	95.69	2.77	0.84	Sand
5-Beach			15.33	2.15	0.90	98.30	0.80	0.00	Sand
6-Off			81.55	1.13	0.00	10.53	40.21	49.26	Silty-Clay
7-Off			81.07	1.14	0.00	13.20	39.33	47.47	Silty-Clay
8-Off			51.42	1.44	0.13	64.89	14.62	20.36	Clayey-Sand
9-Off			71.21	1.22	0.00	15.84	48.36	35.81	Clayey-Silt
10-Off			80.77	1.14	0.00	31.46	41.04	27.50	Sand-Silt-Clay
11-Off			62.18	1.31	0.00	30.95	42.89	26.16	Sand-Silt-Clay
12-Off			87.35	1.09	0.00	21.00	37.53	41.48	Sand-Silt-Clay

Table C-1. Sample data: physical properties (cont.). Off denotes offshore grab sample. Sites 3, 4, and 5	are bluff sites: T and B
denoting top and bottom of bluff. All other sites are coring sites (marsh). Bulk density calculated using B	ennett and Lambert (1971)
method.	

Sample ID	Upper interval (cm)	Lower interval (cm)	H ₂ 0 (% wet weight)	Bulk density (Bennett & Lambert) (g/cm ³)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Shepard's (1954) classification
13-Off			37.38	1.66	0.00	93.60	3.51	2.89	Sand
14A-Off			23.02	1.95	0.04	95.04	3.32	1.60	Sand
22-Off			83.26	1.12	0.00	4.14	46.56	49.29	Silty-Clay

	Upper	Lower		Nutrients				Elements		
Sample ID	interval (cm)	interval (cm)	N (%)	C (%)	P (%)	S (%)	Ag (ppm)	Al (%)	Be (ppm)	Bi (ppm)
1-1	0.00	12.70	0.935	13.750	0.125	0.829	0.4	3.70	1.560	BDL
1-1 R	0.00	12.70	0.908	13.795	0.124	0.783	BDL	3.17	1.528	BDL
1-2	12.70	27.00	0.955	16.775	0.069	1.334	BDL	3.12	1.341	BDL
1-3	27.00	38.00	1.255	23.083	0.066	1.673	BDL	2.35	1.072	2.388
1-4	38.00	53.30	1.122	21.737	0.048	2.444	BDL	2.45	BDL	3.264
1-1 P	0.00	12.70	1.433	27.842	0.102	0.725	BDL	2.11	BDL	BDL
1-1 P R			1.445	29.943		1.110				
1-2 P	12.70	27.00	1.159	31.493	0.064	1.081	BDL	2.04	BDL	BDL
1-3 P	27.00	38.00	1.222	38.817	0.048	1.145	BDL	1.50	BDL	BDL
1-4 P	38.00	53.30	0.927	34.554	0.039	1.375	BDL	1.73	BDL	BDL
6-1	0.00	27.50	0.786	13.007	0.077	1.121	0.4	4.03	1.330	BDL
6-1 R	0.00	27.50			0.077		0.3	4.49	1.309	BDL
6-2	27.50	44.00	0.882	20.012	0.062	2.603	0.4	3.42	1.187	BDL
6-3	44.00	61.00	0.975	21.003	0.045	2.669	0.3	3.11	1.153	BDL
7-1	0.00	20.00	0.880	15.176	0.066	1.224	0.5	3.91	1.257	2.006
7-2	20.00	40.00	1.044	22.280	0.055	2.858	BDL	2.58	BDL	2.036
7-3	40.00	60.00	0.981	18.500	0.044	2.193	0.3	2.98	1.128	BDL
7-4	60.00	78.00	1.011	18.780	0.043	2.281	BDL	3.16	1.128	BDL
7-4 R	60.00	78.00	0.996	18.715	0.044	2.314	BDL	3.48	1.146	BDL
7-5	78.00	95.00	1.281	23.432	0.065	2.923	0.5	8.34	2.437	2.324
8-1	0.00	14.50	0.158	2.895	0.019	0.438	0.4	3.07	BDL	BDL
8-1 R	0.00	14.50	0.153	2.986	0.019	0.445	0.5	3.00	BDL	BDL
8-1 T	0.00	14.50			0.018		0.5	2.83	BDL	BDL
8-2	14.50	29.00	0.380	7.293	0.036	1.131	0.5	2.80	1.230	BDL
8-3	29.00	45.00	0.606	10.715	0.043	1.671	0.5	3.63	1.377	BDL

Table C-2. Sample data: chemical analyses. Sample ID: \mathbf{P} = Plant tissue samples; \mathbf{R} = Replicate sample (QA/QC); \mathbf{T} = triplicate sample (QA/QC). **Off** denotes offshore grab sample. Sites 3, 4, and 5 are bluff sites: T and B denoting top and bottom of bluff. All other sites are coring sites (marsh). BDL denotes "below detection limit."

	Upper	Lower		Nutrients				Elements		
Sample ID	interval (cm)	interval (cm)	N (%)	C (%)	P (%)	S (%)	Ag (ppm)	Al (%)	Be (ppm)	Bi (ppm)
8-4	45.00	63.50	0.713	13.958	0.051	1.554	0.3	3.78	1.455	BDL
9-1 #1	0.00	19.00	0.250	4.506	0.039	0.592	0.5	3.29	BDL	BDL
9-1 #1 R	0.00	19.00			0.038		0.4	2.96	BDL	BDL
9-1 #2	0.00	19.00	0.247	3.745	0.038	0.504	0.5	2.90	BDL	BDL
9-2	19.00	39.00	0.456	8.331	0.038	0.973	0.6	3.98	1.333	BDL
9-3	39.00	59.00	0.808	15.651	0.047	2.974	0.4	3.46	1.187	BDL
9-4	59.00	76.00	0.489	8.635	0.026	2.129	0.5	3.99	1.350	BDL
10-1	0.00	23.50	0.439	8.239	0.046	1.243	0.6	4.50	1.448	BDL
10-1 R	0.00	23.50	0.428	8.036	0.045	1.242	0.6	4.35	1.459	BDL
10-2	23.50	35.50	0.478	8.596	0.039	2.187	0.7	4.19	1.613	BDL
10-3	35.50	48.50	0.535	11.444	0.038	3.095	0.5	3.93	1.487	BDL
10-3 R	35.50	48.50			0.037		0.5	3.66	1.441	BDL
11-1	0.00	19.00	0.267	4.547	0.030	0.605	0.6	3.83	1.025	BDL
11-1 R	0.00	19.00			0.030		0.5	3.54	1.033	BDL
11-2	19.00	36.00	0.394	7.093	0.040	1.453	0.6	4.49	1.620	BDL
11-3	36.00	47.00	0.944	18.397	0.053	2.889	BDL	3.48	1.073	BDL
11-4	47.00	60.00	0.770	16.660	0.047	2.263	0.4	3.24	BDL	BDL
12-1 #1	0.00	21.00	0.472	8.620	0.040	1.294	0.4	4.31	1.497	BDL
12-1 #1 R	0.00	21.00	0.479	8.687		1.277				
12-1 #2	0.00	21.00	0.472	8.695	0.039	1.292	0.4	4.22	1.477	BDL
12-2	21.00	38.00	0.885	16.746	0.042	2.951	0.3	3.34	1.286	BDL
12-3	38.00	52.00	0.928	20.151	0.037	2.396	0.3	2.86	BDL	2.258
12-4	52.00	67.50	0.632	12.405	0.040	1.454	BDL	3.70	1.222	BDL
13-1	0.00	21.00	0.149	2.294	0.026	0.200	0.3	3.00	BDL	BDL
13-2	21.00	35.50	0.396	6.898	0.043	1.242	0.6	4.02	1.322	BDL
13B-1	0.00	8.00	0.157	3.051	0.022	0.273	0.5	2.74	BDL	BDL

Table C-2 Sample data: chemical analyses Sample ID: \mathbf{P} - Plant tissue samples: \mathbf{P} - Replicate sample (OA/OC): \mathbf{T} - triplicate

							$\mathbf{R} = \text{Replicate}$			
			-	-			s: T and B de	noting top an	d bottom of l	oluff. All
other sites ai	Ŭ	г Ì Г	sh). BDL de	notes "below	detection lin	11t."				
Sample ID	Upper interval	Lower interval		Nutrients			I	Elements		
Sample ID	(cm)	(cm)	Ν	С	Р	S	Ag	Al	Be	Bi
	. ,	· ,	(%)	(%)	(%)	(%)	(ppm)	(%)	(ppm)	(ppm)
13B-2	8.00	20.00	0.154	2.957	0.020	0.275	0.5	2.60	BDL	BDL
13B-2 R	8.00	20.00	0.165	3.204	0.020	0.476	0.4	2.44	BDL	BDL
13B-3	20.00	35.00	0.279	4.543	0.036	0.997	BDL	3.94	1.139	BDL
13B-4	35.00	46.50	0.400	6.592	0.040	1.536	0.4	3.84	1.426	BDL
13B-5	46.50	70.50	0.792	15.252	0.044	2.548	0.3	3.38	1.092	BDL
14-1	0.00	17.50	0.493	8.204	0.042	0.772	0.4	3.06	BDL	BDL
14-2	17.50	26.00	0.493	9.572	0.038	1.151	0.5	3.92	1.203	BDL
14-3	26.00	45.50	0.554	9.993	0.037	1.232	BDL	2.83	BDL	BDL
14-3 R	26.00	45.50	0.555	10.154		1.263				
14B-1	0.00	16.00	0.299	6.017	0.030	0.863	0.4	3.25	BDL	BDL
14B-2	16.00	28.50	0.351	6.224	0.035	1.446	0.6	4.11	1.346	BDL
14B-2 R	16.00	28.50			0.036		0.5	4.44	1.393	BDL
14B-3	28.50	46.50	0.801	13.833	0.051	2.397	0.5	3.55	1.272	BDL
14B-4	46.50	64.50	0.564	9.876	0.041	1.429	0.5	4.04	1.367	BDL
14B-5	64.50	75.50	0.244	4.208	0.033	1.859	0.6	5.01	1.660	BDL
14B-6	75.50	86.50	0.403	8.606	0.028	1.881	0.5	4.23	1.383	BDL
14B-6 R	75.50	86.50			0.027		0.6	4.03	1.348	BDL
14B-1 P	0.00	16.00	0.898	25.112	0.036	1.909	0.8	1.86	BDL	BDL
14B-2 P	16.00	28.50	1.081	31.556	0.044	5.005	0.4	1.94	1.005	BDL
14B-3 P	28.50	46.50	1.044	29.903	0.049	2.911	BDL	2.41	BDL	BDL
14B-4 P	46.50	64.50	0.989	32.706	0.044	2.411	BDL	2.47	1.006	BDL
14B-5 P	64.50	75.50	0.790	30.799	0.029	7.875	BDL	2.19	BDL	BDL
14B-6 P	75.50	86.50	0.970	37.499	0.032	5.004	BDL	1.67	BDL	BDL
18-0	0.00	24.50	0.302	6.138	0.032	1.110	0.7	4.06	1.429	BDL
18-0 R	0.00		0.304	6.378	0.000	1.113				
18-1	24.50	37.00	0.717	14.877	0.038	1.898	0.5	3.56	1.027	BDL

	Upper	Lower		Nutrients				Elements		
Sample ID	interval (cm)	interval (cm)	N (%)	C (%)	P (%)	S (%)	Ag (ppm)	Al (%)	Be (ppm)	Bi (ppm)
18-2	37.00	62.00	0.500	9.107	0.037	1.466	0.5	3.83	1.351	BDL
18-3	62.00	87.00	0.348	5.927	0.034	1.007	0.6	3.84	1.474	BDL
18-4	87.00	112.00	0.571	11.574	0.028	2.705	0.5	4.21	1.390	BDL
18-5	112.00	143.00	0.327	6.430	0.027	1.400	0.5	3.71	1.109	3.706
18-5 R	112.00	143.00			0.027		0.3	3.44	1.196	BDL
18-5 R	112.00	143.00			0.027		0.3	3.20	1.143	BDL
18-5 T	112.00	143.00			0.028		BDL	3.83	1.146	BDL
19-1	0.00	17.00	0.167	3.858	0.035	1.066	0.3	3.78	1.014	BDL
19-1 R	0.00	17.00			0.036		0.4	3.67	1.024	BDL
19-1 T	0.00	17.00			0.036		0.3	3.56	1.002	BDL
19-2	17.00	30.00	0.132	2.392	0.023	0.572	0.5	4.01	1.048	BDL
19-2 R	17.00	30.00	0.136	2.477		0.527				
19-3	30.00	46.50	0.159	2.745	0.031	0.809	0.8	4.17	1.302	BDL
19-4	46.50	57.50	0.673	16.597	0.041	2.173	0.3	2.85	BDL	BDL
19-1 P	0.00	17.00	0.748	25.756	0.081	0.756	0.7	2.16	BDL	BDL
19-2 P	17.00	30.00	0.949	29.787	0.057	1.285	0.8	2.01	BDL	2.202
19-2 P R	17.00	30.00	0.942	29.702		1.200				
19-3 P	30.00	46.50	0.910	32.688	0.048	1.856	0.5	1.99	BDL	BDL
19-4 P	46.50	57.50	0.977	40.018	0.049	2.522	BDL	1.25	BDL	BDL
22-1	0.00	23.00	0.466	9.895	0.041	1.154	0.6	3.62	1.360	BDL
22-2	23.00	42.00	0.476	9.268	0.036	1.368	0.4	3.67	1.477	BDL
22-3	42.00	58.00	0.966	16.478	0.040	2.129	0.4	3.45	1.121	BDL
Site 3-T	Bluff	top	0.019	0.405	0.006	BDL	BDL	1.56	BDL	BDL
Site 3-B	Bluff	bottom	0.031	0.537	0.014	0.044	0.6	4.73	1.280	BDL
Site 3-B R	Bluff	bottom	0.030	0.534	0.016	0.023	0.6	4.52	1.229	BDL
Site 4-T	Bluff	top	0.013	0.259	0.005	BDL	BDL	2.08	BDL	BDL

Table C-2 Sample data: chemical analyses Sample ID: \mathbf{P} - Plant tissue samples: \mathbf{P} - Replicate sample (OA/OC): \mathbf{T} - triplicate

Table	C-2 . Sample data: chemical analyses. Sample ID: \mathbf{P} = Plant tissue samples; \mathbf{R} = Replicate sample (QA/QC); \mathbf{T} = triplicate
sample	e (QA/QC). Off denotes offshore grab sample. Sites 3, 4, and 5 are bluff sites: T and B denoting top and bottom of bluff. All
other s	sites are coring sites (marsh). BDL denotes "below detection limit."

	Upper	Lower		Nutrients				Elements		
Sample ID	interval (cm)	interval (cm)	N (%)	C (%)	P (%)	S (%)	Ag (ppm)	Al (%)	Be (ppm)	Bi (ppm)
Site 4-B	Bluff	bottom	0.010	0.167	0.004	BDL	BDL	1.80	BDL	BDL
Site 5	Bluff		0.004	0.041	0.006	0.007	BDL	3.60	BDL	BDL
1-Off			0.801	16.977		1.649				
3-Beach										
3-Off			0.032	0.273		0.053				
4-Beach										
5-Beach										
6-Off			0.932	18.151		2.216				
7-Off			0.823	14.673		1.928				
8-Off			0.181	3.468		0.369				
9-Off			0.533	10.245		1.185				
10-Off			0.594	14.041		1.713				
11-Off			0.317	5.753		0.785				
12-Off			0.833	19.449		2.781				
13-Off			0.127	2.468		0.443				
14A-Off			0.029	0.446		0.058				
14B-Off			0.026	0.377		0.045				
22-Off			0.781	16.023		2.603				

			Sites (inter	sh). BDL de		w detection				
	Upper	Lower				Elen	nents (Cont.)			
Sample ID	interval (cm)	interval (cm)	Ca (%)	Cd (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)	Mn (ppm)
1-1	0.00	12.70	1.74	BDL	10	49	1.83	1.25	0.94	176
1-1 R	0.00	12.70	1.72	BDL	10	38	1.69	1.17	0.89	170
1-2	12.70	27.00	0.49	BDL	9	32	1.29	0.93	0.71	161
1-3	27.00	38.00	0.52	BDL	12	39	0.88	0.71	0.93	54
1-4	38.00	53.30	0.48	BDL	10	20	1.66	0.74	0.70	67
1-1 P	0.00	12.70	1.18	BDL	14	32	0.86	0.63	0.56	95
1-1 P R	0.00	12.70								
1-2 P	12.70	27.00	0.30	BDL	10	23	0.93	0.51	0.47	46
1-3 P	27.00	38.00	0.32	BDL	8	26	0.42	0.20	0.42	65
1-4 P	38.00	53.30	0.26	BDL	10	13	1.44	0.41	0.33	40
6-1	0.00	27.50	4.54	BDL	8	30	1.98	1.36	0.93	170
6-1 R	0.00	27.50	4.54	BDL	8	30	1.94	1.34	0.93	168
6-2	27.50	44.00	0.62	BDL	11	25	2.00	1.02	0.79	103
6-3	44.00	61.00	0.63	BDL	8	21	2.00	0.94	0.88	105
7-1	0.00	20.00	0.60	BDL	7	32	1.43	1.28	0.96	158
7-2	20.00	40.00	0.51	BDL	9	27	1.48	0.78	0.90	76
7-3	40.00	60.00	0.62	BDL	6	19	1.26	1.05	0.94	90
7-4	60.00	78.00	0.73	BDL	7	15	1.04	1.13	1.07	88
7-4 R	60.00	78.00	0.74	BDL	7	12	1.05	1.16	1.09	78
7-5	78.00	95.00	1.30	BDL	5	21	1.78	4.26	1.32	540
8-1	0.00	14.50	0.39	BDL	13	15	0.91	1.36	0.34	113
8-1 R	0.00	14.50	0.39	BDL	13	17	0.86	1.31	0.33	105
8-1 T	0.00	14.50	0.38	BDL	12	13	0.86	1.29	0.34	110
8-2	14.50	29.00	0.49	BDL	6	17	1.68	1.38	0.70	145

Table C-2. Sample data: chemical analyses (cont.). Sample ID: \mathbf{P} = Plant tissue samples; \mathbf{R} = Replicate sample (QA/QC); \mathbf{T} = triplicate sample (QA/QC). Off denotes offshore grab sample. Sites 3, 4, and 5 are bluff sites: \mathbf{T} and \mathbf{B} denoting top and bottom of bluff. All other sites are coring sites (marsh). BDL denotes "below detection limit."

Table C-2.	Sample da	ta: chemica	al analyses	(cont.). Sam	ple ID: $\mathbf{P} =$	Plant tissue	e samples; $\mathbf{R} = 1$	Replicate san	nple (QA/QC);
$\mathbf{T} = \text{triplica}$	te sample (QA/QC). (Off denotes	offshore gral	o sample. S	Sites 3, 4, ar	nd 5 are bluff si	tes: T and B	denoting top	and bottom
of bluff. A	Il other site	s are coring	g sites (mar	sh). BDL de	notes "belo	w detection	ı limit."			
	Upper	Lower				Eler	nents (Cont.)			
Sample ID	interval (cm)	interval (cm)	Ca (%)	Cd (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)	Mn (ppm)
8-3	29.00	45.00	0.56	BDL	7	17	1.99	1.33	0.95	148
8-4	45.00	63.50	0.65	BDL	7	15	1.60	1.32	1.14	127
9-1 #1	0.00	19.00	0.48	BDL	6	12	1.46	1.37	0.51	164
9-1 #1 R	0.00	19.00	0.46	BDL	7	12	1.40	1.33	0.48	158
9-1 #2	0.00	19.00	0.45	BDL	6	12	1.41	1.28	0.48	157
9-2	19.00	39.00	0.67	BDL	8	15	1.83	1.64	0.84	194
9-3	39.00	59.00	0.60	BDL	11	9	2.53	1.20	0.99	114
9-4	59.00	76.00	0.69	BDL	8	10	2.51	1.60	0.96	166
10-1	0.00	23.50	0.68	BDL	8	16	2.21	1.63	0.86	215
10-1 R	0.00	23.50	0.68	BDL	9	20	2.24	1.62	0.85	218
10-2	23.50	35.50	0.69	BDL	12	21	3.04	1.58	0.99	215
10-3	35.50	48.50	0.61	BDL	12	16	3.37	1.38	1.07	198
10-3 R	35.50	48.50	0.59	BDL	11	16	3.23	1.28	0.99	191
11-1	0.00	19.00	0.84	BDL	6	12	1.33	1.46	0.59	170
11-1 R	0.00	19.00	0.83	BDL	6	12	1.37	1.43	0.59	173
11-2	19.00	36.00	0.67	BDL	10	15	2.53	1.65	0.90	215
11-3	36.00	47.00	0.60	BDL	9	9	2.27	1.10	1.02	90
11-4	47.00	60.00	0.71	BDL	9	9	1.40	1.15	1.07	99
12-1 #1	0.00	21.00	0.63	BDL	9	15	2.31	1.60	0.91	206
12-1 #1 R	0.00	21.00								
12-1 #2	0.00	21.00	0.61	BDL	8	15	2.22	1.58	0.89	201
12-2	21.00	38.00	0.54	BDL	9	15	2.50	1.13	1.02	127
12-3	38.00	52.00	0.68	BDL	5	8	1.09	1.02	0.98	75
12-4	52.00	67.50	0.74	BDL	8	7	1.48	1.44	0.98	150
13-1	0.00	21.00	0.44	BDL	5	7	1.20	1.39	0.43	173

~ ~ -___ _ _ . 1.

Table C-2.	Sample da	ata: chemica	al analyses	(cont.). Sam	ple ID: $\mathbf{P} =$	Plant tissue	e samples; $\mathbf{R} = 1$	Replicate san	nple (QA/QC);
$\mathbf{T} = \text{triplica}$	ite sample (QA/QC). (Off denotes	offshore grat	o sample. S	Sites 3, 4, ar	nd 5 are bluff si	tes: T and B	denoting top	and bottom
of bluff. A	Il other site	s are coring	g sites (mar	sh). BDL de	notes "belo	w detection	limit."			
	Upper	Lower				Elen	nents (Cont.)			
Sample ID	interval (cm)	interval (cm)	Ca (%)	Cd (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)	Mn (ppm)
13-2	21.00	35.50	0.65	BDL	9	16	2.32	1.52	0.94	212
13B-1	0.00	8.00	0.48	BDL	15	11	0.81	1.30	0.31	135
13B-2	8.00	20.00	0.41	BDL	7	8	1.07	1.31	0.35	157
13B-2 R	8.00	20.00	0.40	BDL	7	11	1.06	1.30	0.34	154
13B-3	20.00	35.00	0.62	BDL	7	12	2.06	1.52	0.68	243
13B-4	35.00	46.50	0.63	BDL	9	15	2.55	1.54	0.87	265
13B-5	46.50	70.50	0.59	BDL	8	10	2.38	1.17	1.11	181
14-1	0.00	17.50	0.47	BDL	6	13	1.71	1.16	0.74	165
14-2	17.50	26.00	0.53	BDL	9	29	2.07	1.42	0.81	178
14-3	26.00	45.50	0.50	BDL	7	12	1.45	1.07	0.69	129
14-3 R	26.00	45.50								
14B-1	0.00	16.00	0.45	BDL	10	14	1.35	1.19	0.53	149
14B-2	16.00	28.50	0.60	BDL	10	22	2.23	1.50	0.78	204
14B-2 R	16.00	28.50	0.63	BDL	10	14	2.31	1.56	0.83	209
14B-3	28.50	46.50	0.65	BDL	9	15	2.12	1.20	0.93	135
14B-4	46.50	64.50	0.75	BDL	8	10	1.88	1.54	0.94	188
14B-5	64.50	75.50	0.78	BDL	10	12	3.33	1.86	0.94	242
14B-6	75.50	86.50	0.80	BDL	7	11	2.20	1.58	0.87	176
14B-6 R	75.50	86.50	0.77	BDL	7	11	2.12	1.53	0.85	167
14B-1 P	0.00	16.00	0.56	BDL	11	52	1.14	0.65	0.45	95
14B-2 P	16.00	28.50	0.43	0.4	15	33	5.01	0.52	0.57	164
14B-3 P	28.50	46.50	0.52	BDL	10	9	1.67	0.66	0.72	89
14B-4 P	46.50	64.50	0.60	BDL	8	13	1.58	0.67	0.81	98
14B-5 P	64.50	75.50	0.44	BDL	36	31	8.60	0.50	0.60	153
14B-6 P	75.50	86.50	0.58	BDL	16	21	2.72	0.43	0.76	73

Table C.2. Sample data: shamical analysis (cont.) Sample ID: \mathbf{D} - Diant tissue samples: \mathbf{D} - Daplicate sample ($\Omega \Lambda / \Omega C$):

	Upper	Lower				Elem	ents (Cont.)			
Sample ID	interval (cm)	interval (cm)	Ca (%)	Cd (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)	Mn (ppm)
18-0	0.00	24.50	0.79	BDL	9	15	2.31	1.60	0.81	231
18-0 R	0.00	24.50								
18-1	24.50	37.00	0.63	BDL	7	17	1.62	1.20	0.90	134
18-2	37.00	62.00	0.73	BDL	9	8	1.89	1.46	0.82	164
18-3	62.00	87.00	0.75	BDL	8	8	2.10	1.65	0.83	209
18-4	87.00	112.00	0.65	BDL	12	7	2.67	1.47	0.94	116
18-5	112.00	143.00	0.65	BDL	7	32	1.58	1.37	0.63	137
18-5 R	112.00	143.00	0.64	BDL	8	5	1.60	1.37	0.65	144
18-5 R	112.00	143.00	0.61	BDL	7	4	1.55	1.34	0.62	137
18-5 T	112.00	143.00	0.67	BDL	8	4	1.63	1.40	0.66	147
19-1	0.00	17.00	0.77	BDL	6	7	1.34	1.42	0.51	163
19-1 R	0.00	17.00	0.76	BDL	6	8	1.36	1.48	0.52	162
19-1 T	0.00	17.00	0.75	BDL	6	6	1.34	1.46	0.50	161
19-2	17.00	30.00	0.84	BDL	8	8	1.20	1.50	0.52	167
19-2 R	17.00	30.00								
19-3	30.00	46.50	0.86	BDL	9	9	1.75	1.63	0.65	215
19-4	46.50	57.50	0.66	BDL	8	8	1.44	1.03	0.87	119
19-1 P	0.00	17.00	0.46	0.3	24	19	1.59	0.71	0.47	113
19-2 P	17.00	30.00	0.28	BDL	19	28	1.56	0.59	0.37	79
19-2 P R	17.00	30.00								
19-3 P	30.00	46.50	0.30	0.4	18	23	2.28	0.58	0.38	73
19-4 P	46.50	57.50	0.25	BDL	7	5	1.15	0.32	0.35	44
22-1	0.00	23.00	0.54	BDL	9	37	1.97	1.47	0.97	183
22-2	23.00	42.00	0.56	BDL	10	13	2.03	1.41	0.95	174
22-3	42.00	58.00	0.49	BDL	6	9	1.73	1.22	0.91	89

	1		•	· /	1		e samples; R =	1	1 · · ·	
-	-			-	-		nd 5 are bluff si	tes: T and B	denoting top	and bottom
of bluff. A	all other site	es are coring	g sites (mar	sh). BDL de	notes "belo	w detection	i limit."			
	Upper	Lower				Eler	nents (Cont.)			
Sample ID	interval (cm)	interval (cm)	Ca (%)	Cd (ppm)	Co (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)	Mn (ppm)
Site 3-T	Bluff	top	0.11	BDL	14	12	0.56	0.79	0.05	91
Site 3-B	Bluff	bottom	0.30	BDL	5	22	2.38	1.67	0.34	133
Site 3-B R	Bluff	bottom	0.29	BDL	5	21	2.34	1.64	0.33	129
Site 4-T	Bluff	top	0.03	BDL	8	16	0.74	0.92	0.08	67
Site 4-B	Bluff	bottom	0.02	BDL	8	18	0.99	0.80	0.06	64
Site 5	Bluff		0.10	BDL	7	20	0.64	1.71	0.04	121
1-Off										
3-Beach										
3-Off										
4-Beach										
5-Beach										
6-Off										
7-Off										
8-Off										
9-Off										
10-Off										
11-Off										
12-Off										
13-Off										
14A-Off										
14B-Off										
22-Off										

-		QA/QC). O		-	rab sample	. Sites 3, 4	, and 5 are b	oluff sites.	All other si	tes are corir	ng sites
(marsh). B		"below det	ection limi	t".							
Comula ID	Upper	Lower]	Elements (Co	nt.)			
Sample ID	interval (cm)	interval (cm)	Mo (ppm)	Na (%)	Ni (ppm)	Pb (ppm)	Sr (ppm)	Ti (%)	V (ppm)	Y (ppm)	Zn (ppm)
1-1	0.00	12.70	4	3.37	24	45	159	0.26	78	21	110
1-1 R	0.00	12.70	3	3.33	23	41	141	0.25	75	18	103
1-2	12.70	27.00	7	3.35	20	39	97	0.25	66	14	82
1-3	27.00	38.00	5	4.57	13	39	98	0.16	52	13	61
1-4	38.00	53.30	12	3.02	15	21	91	0.18	52	11	71
1-1 P	0.00	12.70	5	1.18	13	29	116	0.15	48	15	100
1-1 P R											
1-2 P	12.70	27.00	9	1.13	12	44	67	0.13	50	13	62
1-3 P	27.00	38.00	8	1.02	7	35	57	0.06	40	10	45
1-4 P	38.00	53.30	14	0.80	10	14	55	0.10	44	10	55
6-1	0.00	27.50	4	3.28	23	38	324	0.27	79	19	97
6-1 R	0.00	27.50	5	3.27	24	34	323	0.27	76	19	96
6-2	27.50	44.00	12	3.57	23	43	119	0.22	61	16	112
6-3	44.00	61.00	8	3.52	19	20	114	0.21	55	14	61
7-1	0.00	20.00	6	4.03	22	31	126	0.28	82	16	81
7-2	20.00	40.00	12	5.24	19	41	103	0.16	67	12	92
7-3	40.00	60.00	6	4.73	17	14	122	0.23	55	11	49
7-4	60.00	78.00	6	5.28	18	10	140	0.21	54	14	43
7-4 R	60.00	78.00	5	5.28	18	7	148	0.22	57	16	42
7-5	78.00	95.00	11	9.05	18	21	214	0.19	55	24	61
8-1	0.00	14.50	3	1.68	19	16	137	0.25	30	8	41
8-1 R	0.00	14.50	3	1.62	18	19	133	0.25	30	8	41
8-1 T	0.00	14.50	2	1.67	17	15	129	0.25	29	7	42
8-2	14.50	29.00	5	2.65	23	30	110	0.35	66	10	77

Table C-2. Sample data: chemical analyses (cont.). Sample ID: \mathbf{P} = Plant tissue samples; \mathbf{R} = Replicate sample (QA/QC); \mathbf{T} = triplicate sample (QA/QC) = **Off** denotes offehore graph sample. Sites 2, 4, and 5 are bluff sites - All other sites are sarried

Table C-2.	Sample dat	ta: chemical	analyses (cont.). Sa	ample ID: P	P = Plant tise	sue samples	; R = Repli	cate sample	e (QA/QC);	
$\mathbf{T} = triplicat$	te sample (C	QA/QC). O	ff denotes	offshore g	rab sample	. Sites 3, 4	, and 5 are b	oluff sites.	All other sit	tes are corii	ng sites
(marsh). B	DL denotes	"below dete	ection limit	ť".							
	Upper	Lower]	Elements (Co	nt.)			
Sample ID	interval (cm)	interval (cm)	Mo (ppm)	Na (%)	Ni (ppm)	Pb (ppm)	Sr (ppm)	Ti (%)	V (ppm)	Y (ppm)	Zn (ppm)
8-3	29.00	45.00	5	3.71	20	25	116	0.32	74	11	65
8-4	45.00	63.50	6	4.59	20	14	135	0.28	75	14	46
9-1 #1	0.00	19.00	3	1.90	40	24	135	0.27	46	10	52
9-1 #1 R	0.00	19.00	4	1.84	39	21	131	0.27	45	9	48
9-1 #2	0.00	19.00	3	1.82	39	25	127	0.25	44	9	48
9-2	19.00	39.00	5	3.12	25	28	156	0.35	78	12	60
9-3	39.00	59.00	7	4.78	24	20	126	0.26	66	14	79
9-4	59.00	76.00	6	3.92	25	13	157	0.33	80	11	53
10-1	0.00	23.50	3	2.82	26	32	159	0.35	77	15	69
10-1 R	0.00	23.50	5	2.84	26	32	160	0.35	78	15	72
10-2	23.50	35.50	5	3.10	27	38	146	0.37	94	14	93
10-3	35.50	48.50	5	3.67	27	33	119	0.30	79	12	110
10-3 R	35.50	48.50	5	3.49	25	33	114	0.29	77	13	109
11-1	0.00	19.00	4	1.82	33	25	148	0.30	59	11	50
11-1 R	0.00	19.00	5	1.81	35	21	146	0.30	60	10	48
11-2	19.00	36.00	6	2.67	27	39	150	0.38	92	14	88
11-3	36.00	47.00	7	4.82	17	19	126	0.23	57	14	50
11-4	47.00	60.00	6	5.45	16	14	139	0.25	58	11	34
12-1 #1	0.00	21.00	5	2.74	26	35	145	0.35	91	14	68
12-1 #1 R	0.00	21.00									
12-1 #2	0.00	21.00	6	2.64	25	36	144	0.29	87	13	69
12-2	21.00	38.00	9	3.98	23	32	115	0.23	69	12	77
12-3	38.00	52.00	8	5.38	15	11	134	0.21	46	8	28
12-4	52.00	67.50	5	4.03	21	11	162	0.25	68	10	41
13-1	0.00	21.00	2	1.99	25	16	143	0.25	29	7	33

~ ~ -___ - - -. -I 1.

Table C-2.	Sample dat	ta: chemical	analyses (cont.). Sa	ample ID: P	P = Plant tise	sue samples	; R = Repli	cate sample	e (QA/QC);	
$\mathbf{T} = triplication$	te sample (C	QA/QC). O	ff denotes of	offshore g	rab sample	. Sites 3, 4	, and 5 are b	oluff sites.	All other sit	tes are corir	ng sites
(marsh). B	DL denotes	"below dete	ection limit								
	Upper	Lower]	Elements (Co	nt.)			
Sample ID	interval (cm)	interval (cm)	Mo (ppm)	Na (%)	Ni (ppm)	Pb (ppm)	Sr (ppm)	Ti (%)	V (ppm)	Y (ppm)	Zn (ppm)
13-2	21.00	35.50	4	3.42	44	33	152	0.32	73	12	79
13B-1	0.00	8.00	3	1.35	33	15	134	0.25	27	6	31
13B-2	8.00	20.00	2	1.46	22	16	131	0.29	30	7	40
13B-2 R	8.00	20.00	2	1.44	23	17	132	0.28	30	6	42
13B-3	20.00	35.00	4	2.14	32	27	156	0.26	60	11	66
13B-4	35.00	46.50	4	2.68	27	32	149	0.32	79	12	73
13B-5	46.50	70.50	7	4.50	21	23	121	0.25	65	11	55
14-1	0.00	17.50	4	2.51	33	27	108	0.33	62	9	52
14-2	17.50	26.00	7	3.06	23	38	117	0.33	82	9	70
14-3	26.00	45.50	3	2.50	30	20	110	0.28	47	9	44
14-3 R	26.00	45.50									
14B-1	0.00	16.00	3	1.59	31	25	115	0.28	51	11	54
14B-2	16.00	28.50	5	2.12	38	34	149	0.36	71	13	74
14B-2 R	16.00	28.50	4	2.19	36	36	149	0.35	73	14	76
14B-3	28.50	46.50	6	3.29	26	61	127	0.29	70	14	54
14B-4	46.50	64.50	5	3.14	26	17	158	0.35	79	11	43
14B-5	64.50	75.50	6	2.34	35	17	175	0.40	96	14	64
14B-6	75.50	86.50	7	3.05	22	12	173	0.33	75	13	43
14B-6 R	75.50	86.50	8	2.98	23	11	167	0.31	73	13	42
14B-1 P	0.00	16.00	6	1.16	10	33	84	0.14	43	9	62
14B-2 P	16.00	28.50	14	0.64	22	81	85	0.15	77	16	103
14B-3 P	28.50	46.50	5	0.97	18	230	99	0.18	53	15	53
14B-4 P	46.50	64.50	5	0.73	14	13	109	0.19	60	17	38
14B-5 P	64.50	75.50	26	0.53	50	28	83	0.14	82	17	68
14B-6 P	75.50	86.50	19	0.66	18	12	101	0.13	69	20	37

~ ~ -___ _ _ . 1.

Table C-2.	Sample dat	ta: chemical	analyses (cont.). Sa	ample ID: P	P = Plant tise	sue samples	; R = Repli	cate sample	e (QA/QC);	
$\mathbf{T} = \text{triplicat}$	te sample (C	QA/QC). O	ff denotes of	offshore g	rab sample	. Sites 3, 4	, and 5 are b	oluff sites.	All other sit	tes are corii	ng sites
(marsh). B	DL denotes	"below dete	ection limit								
	Upper	Lower]	Elements (Co	nt.)			
Sample ID	interval (cm)	interval (cm)	Mo (ppm)	Na (%)	Ni (ppm)	Pb (ppm)	Sr (ppm)	Ti (%)	V (ppm)	Y (ppm)	Zn (ppm)
18-0	0.00	24.50	6	2.78	39	31	177	0.33	74	12	87
18-0 R											
18-1	24.50	37.00	7	4.23	21	28	127	0.28	68	11	51
18-2	37.00	62.00	6	3.21	27	15	163	0.31	69	11	51
18-3	62.00	87.00	6	2.90	27	15	164	0.36	84	10	52
18-4	87.00	112.00	12	3.85	27	11	137	0.29	78	12	54
18-5	112.00	143.00	5	2.71	48	12	175	0.26	47	9	34
18-5 R	112.00	143.00	6	2.81	49	12	154	0.27	48	9	30
18-5 R	112.00	143.00	5	2.75	46	10	142	0.26	47	7	28
18-5 T	112.00	143.00	6	2.77	49	11	181	0.24	48	9	29
19-1	0.00	17.00	3	2.15	33	20	196	0.21	37	9	45
19-1 R	0.00	17.00	3	2.18	33	19	196	0.20	38	9	47
19-1 T	0.00	17.00	3	2.14	32	17	193	0.19	37	8	44
19-2	17.00	30.00	3	2.29	30	18	212	0.22	39	8	46
19-2 R	17.00	30.00									
19-3	30.00	46.50	3	2.41	35	23	204	0.33	54	11	68
19-4	46.50	57.50	4	4.54	23	21	137	0.21	40	13	55
19-1 P	0.00	17.00	6	1.46	11	36	107	0.17	42	15	72
19-2 P	17.00	30.00	6	0.79	12	27	65	0.15	54	14	46
19-2 P R	17.00	30.00									
19-3 P	30.00	46.50	8	0.75	14	40	65	0.17	66	18	95
19-4 P	46.50	57.50	6	1.03	9	21	53	0.09	26	12	41
22-1	0.00	23.00	6	3.19	32	29	110	0.36	90	11	65
22-2	23.00	42.00	6	3.20	27	31	114	0.34	84	13	67
22-3	42.00	58.00	9	3.87	20	17	106	0.28	69	12	44

~ _ 1.

		ta: chemical									
$\mathbf{T} = triplicat$	te sample (C	QA/QC). O	ff denotes of	offshore g	rab sample	. Sites 3, 4,	, and 5 are b	oluff sites.	All other sit	tes are corir	ng sites
(marsh). B	DL denotes	"below dete	ection limit								
	Upper	Lower]	Elements (Co	nt.)			
Sample ID	interval (cm)	interval (cm)	Mo (ppm)	Na (%)	Ni (ppm)	Pb (ppm)	Sr (ppm)	Ti (%)	V (ppm)	Y (ppm)	Zn (ppm)
Site 3-T	Bluff	top	BDL	0.28	3	9	66	0.11	6	3	29
Site 3-B	Bluff	bottom	2	0.90	12	16	131	0.29	64	5	54
Site 3-B R	Bluff	bottom	2	0.89	14	20	126	0.32	68	5	56
Site 4-T	Bluff	top	BDL	0.14	5	10	52	0.05	10	6	32
Site 4-B	Bluff	bottom	BDL	0.11	3	8	47	0.07	10	2	31
Site 5	Bluff		BDL	0.31	8	14	109	0.21	16	3	28
1-Off											
3-Beach											
3-Off											
4-Beach											
5-Beach											
6-Off											
7-Off											
8-Off											
9-Off											
10-Off											
11-Off											
12-Off											
13-Off											
14A-Off											
14B-Off											
22-Off											

Г

APPENDIX D Land loss and loading calculations

Calculating Land Loss (Area and Volume)

For each land loss polygon, the area (m^2) covered by water is recorded for the years 1942 and 1989. Likewise, the total length (m) of the 1989 shoreline is recorded. Land loss over the 47-year period is determined by subtracting water area in 1989 from water area in 1942. The difference in water area is equivalent to the area of land lost by erosion. Table D-1 is a tabulation of water area, land loss, and shoreline length for each polygon and basin. Land loss is indicated by a negative (-) sign, which is dropped in subsequent calculations.

For any given land loss polygon, the associated rate of shoreline retreat is calculated by dividing area lost by the length of the reach:

$$R = \frac{A_{(1989 - 1942)} / SL_{(1989)}}{47 yr}$$
 Eq. D-1

where:	R	is the annual rate of shoreline retreat (m/yr),
	$A_{\scriptscriptstyle (1989 ext{-}1942)}$	is the area of land (m^2) lost to erosion within the land loss
		polygon between 1942 and 1989 (47-year period), and
	$SL_{(1989)}$	is the length (m) of the shoreline within the polygon.

shoreline er	osion, by shorelii	ne reach (land lo	ss polygon).						
Polygon	1942 water area (m ²)	1989 water area (m ²)	SL 1989 shoreline length (m)	A ₍₁₉₈₉₋₁₉₄₂₎ Change in land area (m ²)	Change per meter of shoreline	<i>R</i> Annual shoreline change (m/yr)	H Bank height (m)	Volume (m ³)	Annual volume (m ³ /yr)
P1	47,950.94	50,805.64	583.18	-2,854.70	-4.90	-0.10	0.6	-1,712.82	-36.44
P2	3,526,880.74	3,778,632.75	44,410.90	-251,752.01	-5.67	-0.12	0.68	-171,191.37	-3,642.37
P4	298,803.57	331,356.66	4,444.16	-32,553.09	-7.32	-0.16	0.4	-13,021.24	-277.05
P6	628,573.16	697,538.96	7,531.84	-68,965.80	-9.16	-0.19	0.4	-27,586.32	-586.94
P7	888,199.10	953,787.44	6,962.69	-65,588.34	-9.42	-0.20	0.5	-32,794.17	-697.75
P8	670,821.01	741,784.40	6,301.49	-70,963.39	-11.26	-0.24	0.4	-28,385.36	-603.94
P9	154,799.59	168,758.89	1,135.80	-13,959.30	-12.29	-0.26	0.65	-9,073.55	-193.05
P10	566,711.81	633,225.41	9,793.89	-66,513.60	-6.79	-0.14	0.49	-32,591.66	-693.44
P12	472,959.59	572,462.32	11,258.65	-99,502.73	-8.84	-0.19	0.57	-56,716.56	-1,206.74
P13	1,116,239.83	1,219,653.87	8,740.04	-103,414.04	-11.83	-0.25	0.72	-74,458.11	-1,584.22
P14	264,016.06	283,567.41	2,892.47	-19,551.35	-6.76	-0.14	0.68	-13,294.92	-282.87
P15	643,466.91	683,503.74	5,637.03	-40,036.83	-7.10	-0.15	1.4	-56,051.56	-1,192.59
P16	430,363.14	463,622.89	7,582.11	-33,259.75	-4.39	-0.09	1.4	-46,563.65	-990.72
P17	246,228.81	264,120.82	8,687.06	-17,892.01	-2.06	-0.04	3.12	-55,823.07	-1,187.72
P18	916,842.02	941,630.89	12,403.39	-24,788.87	-2.00	-0.04	1.9	-47,098.85	-1,002.10
P19	430,330.55	453,762.39	2,177.43	-23,431.84	-10.76	-0.23	0.53	-12,418.88	-264.23
P20	114,667.58	132,586.22	1,533.47	-17,918.64	-11.69	-0.25	0.42	-7,525.83	-160.12
P21	578,696.59	610,993.02	5,135.51	-32,296.43	-6.29	-0.13	0.42	-13,564.50	-288.61
P26	446,165.72	498,731.88	4,816.07	-52,566.16	-10.91	-0.23	0.28	-14,718.52	-313.16
P27	762,215.56	814,221.01	2,821.89	-52,005.45	-18.43	-0.39	0.28	-14,561.53	-309.82
P28	418,131.38	476,037.20	5,325.49	-57,905.82	-10.87	-0.23	0.45	-26,057.62	-554.42
P29	301,883.44	322,794.91	1,181.26	-20,911.47	-17.70	-0.38	0.98	-20,493.24	-436.03
P30	454,263.04	501,288.98	4,482.79	-47,025.94	-10.49	-0.22	0.98	-46,085.42	-980.54
Totals	14,379,210.14	15,594,867.70	165,838.61	1,215,657.56	Mean = -7.33	Mean = -0.16		821,788.75	17,484.87

Table D-1. Area (m^2) and volume (m^3) of land lost during the 47-year period between 1942 and 1989 and linear rates (m/yr) of shoreline erosion, by shoreline reach (land loss polygon).

Calculating mean component concentrations for each site

The mean bulk concentration of each nutrient (total carbon, nitrogen, and phosphorus) was calculated for each core or bank/bluff site by averaging the concentrations of the individual core samples using equation D-2.

$$\overline{C}_{N(site)} = \frac{\sum_{i} (\rho_{adj(i)} * 1000 * \frac{[N]_{(i)}}{100} * l_{(i)})}{l_{(i)}}$$
Eq. D-2

where: $\overline{C}_{N(site)}$	is the mean bulk concentration (Kg/m ³)of the component of interest (N) (e.g., carbon, nitrogen, phosphorus, etc.) for core/site,
$\rho_{adj(i)}$	is the adjusted dry bulk density (g/cm ³) of the sample
	section (i), corrected to account for any core compaction,
1000	factor to convert g/cm^3 to Kg/m^3
$[N]_{(i)}$	is the nutrient concentration (% dry weight) measured for sample section (<i>i</i>),
$l_{(i)}$	is the length, in meters, of the sample section (i), and
$l_{(t)}$	is the total core length, in meters, truncated to measured bank height or, in the case of a bluff sample, bluff height.

Mean bulk concentrations of sand, silt, and clay components for each site were calculated using a slightly different equation (Eq. D-3). The sand, silt, and clay percentages obtained from the textural analysis applied the abiotic or mineral portion of the sediment sample only, not the whole sample. Therefore, textural component percentages were multiplied by the fraction representing the mineral portion of whole sediment:

$$\overline{C}_{S(site)} = \frac{\sum_{i} (\rho_{adj(i)} * 1000 * \frac{[S]_{(i)}}{100} * \frac{[M]_{(i)}}{100} * l_{(i)})}{l_{(i)}}$$
Eq. D-3

where:
$$\overline{C}_{S(site)}$$
 is the mean bulk concentration (Kg/m³)of the textural
component of interest (S) (*e.g.*, sand, silt, clay-size
particles, etc.) for core/site;
 $\rho_{adj(i)}$ is the adjusted bulk density (g/cm³) of the sample section
(*i*), corrected to account for any core compaction;
1000 factor to convert g/cm³ to Kg/m³

[S] _(i)	is the textural component (% dry weight sand, silt, or clay) measured for sample section (<i>i</i>);
[<i>M</i>] _(i)	is the abiotic or mineral portion (%dry weight) of the sample section;
$l_{(i)}$ $l_{(t)}$	is the length, in meters, of the sample section <i>(i)</i> ; is the total core length, in meters, truncated to measured bank height; or, in the case of a bluff sample, height of the bluff.

Table D-2. Mean textural and nutrient concentrations calculated for each site using equations D-2 and D-3. All values listed are Kg/m^3 . These site values are assigned to specific land loss polygons (see Table 4-2) to calculate the sediment and nutrient contribution rates for the polygon using equation D-4.

Site	Total solids	Total organics (biotic component)		Nutrients		Textural component			
			Nitrogen	Carbon	Phosphorus	Sand	Silt	Clay	
1	177.04	107.28	1.84	33.07	0.143	9.00	24.10	36.65	
3	1268.35	38.95	0.60	7.31	0.096	1025.39	120.17	83.84	
4	1442.34	32.27	0.35	3.45	0.064	1161.32	93.46	94.05	
5	1336.30	25.74	0.20	0.89	0.086	1092.87	78.47	120.27	
6	223.88	139.73	1.91	36.71	0.149	6.48	35.44	42.23	
7	178.53	107.49	1.71	32.15	0.098	3.66	33.26	34.11	
8	492.20	138.09	1.72	32.30	0.151	166.06	105.61	82.43	
9	493.28	99.51	1.97	36.25	0.191	190.06	111.38	92.33	
10	445.54	140.92	2.02	37.95	0.193	32.89	154.37	117.36	
11	410.93	138.98	1.51	27.15	0.143	117.87	86.77	67.31	
12	339.81	139.33	2.04	37.96	0.137	20.70	89.65	90.13	
13	766.86	144.58	1.69	27.83	0.236	393.56	152.12	76.60	
13B	560.88	111.60	1.69	30.53	0.169	245.32	121.40	82.56	
14	458.42	193.45	2.43	41.90	0.181	110.60	79.36	75.01	
14B	384.69	97.57	1.85	32.05	0.145	85.45	99.71	101.96	
18	325.46	108.08	1.36	26.65	0.123	32.90	112.02	72.46	
19	977.77	113.18	1.64	32.75	0.300	604.17	181.11	79.31	
22	294.89	104.70	1.49	29.90	0.115	1.72	101.06	87.40	

Calculating component loadings (Kg/yr)

The mean site concentration values were then assigned to specific polygons to calculate the nutrient loading for the polygon using the following equation:

$$L(N),(S) = \overline{C}N, S(site) * \left(\frac{A(1989 - 1942) * \overline{H}}{47 yr}\right)$$
 Eq. D-4

where:
$$L_{(N),(S)}$$
is the annual loading (Kg/yr) of the component of interest (
N: e.g., carbon, nitrogen or phosphorus; or S: e.g., sand,
silt, clay) for the land loss polygon; $\overline{C}_{N, S(site)}$ is the mean loading concentration (Kg/m³)of the
component of interest (N) (e.g., carbon, nitrogen,
phosphorus, etc.) for core/site assigned to the land loss
polygon; $A_{(1989-1942)}$ is the area of land (m²) lost to erosion within the land loss
polygon between 1942 and 1989 (47 year period);
is the mean bank height assigned to the land loss polygon.

Amual component loadings (Kg/yr) for each land loss porygon. Loadings (except total volume croded) were calculated											
using Equation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (\overline{H}) are listed in Table D-1.											
Volume				Total	Total	Total					
			Phosphorus	solids	organics	sediments	Sand	Silt	Clay	Pb	Zn
(m³/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)	(Kg/yr)
36.44	1,168	68	5.29	14,019	3,556	10,464	3,114	3,634	3,716	0.456	0.801
3,642.37	111,184	6,140	613.99	2,042,932	406,496	1,636,436	893,532	442,187	300,717	44.190	103.692
277.05	10,517	564	37.91	94,143	38,602	55,541	5,734	24,837	24,970	3.150	6.516
586.94	22,281	1,195	80.31	199,448	81,781	117,667	12,147	52,620	52,901	6.673	13.804
697.75	18,942	1,052	99.72	286,726	96,972	189,755	82,244	60,545	46,965	8.136	17.230
603.94	22,919	1,219	116.60	269,078	85,106	183,973	19,866	93,230	70,876	9.065	21.011
193.05	6,998	380	36.83	95,230	19,211	76,020	36,691	21,503	17,825	2.265	5.525
693.44	20,733	1,031	79.80	204,488	72,606	131,881	1,195	70,082	60,604	5.884	13.081
1,206.74	38,983	2,075	182.33	593,953	166,643	427,310	200,390	127,447	99,473	4.940	13.207
1,584.22	50,927	2,707	155.62	282,829	170,291	112,537	5,804	52,691	54,043	22.204	58.311
282.87	10,383	539	42.09	63,330	39,527	23,804	1,834	10,025	11,945	2.192	5.821
1,192.59	1,057	233	102.02	1,593,657	30,703	1,562,954	1,303,347	93,578	143,436	21.926	45.116
990.72	878	193	84.75	1,323,897	25,506	1,298,391	1,082,728	77,738	119,156	18.214	37.479
1,187.72	4,100	410	75.88	1,713,108	38,325	1,674,782	1,379,331	111,001	111,706	15.215	53.893
1,002.10	7,329	603	96.10	1,271,018	39,031	1,231,987	1,027,552	120,419	84,016	12.630	42.736
264.23	8,739	487	37.87	46,779	28,348	18,431	2,377	6,369	9,685	1.705	3.994
160.12	5,173	275	24.19	78,813	22,112	56,701	26,590	16,911	13,199	0.656	1.752
288.61	9,323	496	43.61	142,052	39,855	102,197	47,926	30,481	23,790	1.182	3.159
313.16	10,255	515	93.85	306,198	35,443	270,754	189,200	56,716	24,838	5.942	13.817
309.82	10,146	510	92.84	302,932	35,065	267,866	187,182	56,111	24,573	5.879	13.670
554.42	14,775	754	68.18	180,442	59,924	120,519	18,239	62,107	40,173	4.423	12.624
436.03	11,620	593	53.62	141,910	47,127	94,783	14,344	48,845	31,594	3.479	9.928
980.54	26,132	1,334	120.59	319,130	105,981	213,149	32,258	109,842			22.327
	ation D-4 Volume eroded (m ³ /yr) 36.44 3,642.37 277.05 586.94 697.75 603.94 193.05 693.44 1,206.74 1,584.22 282.87 1,192.59 990.72 1,187.72 1,002.10 264.23 160.12 288.61 313.16 309.82 554.42 436.03	ation D-4.Area eVolume erodedCarbon (Kg/yr) 36.44 1,168 $3,642.37$ 111,184 277.05 10,517 586.94 22,281 697.75 18,942 603.94 22,919 193.05 6,998 693.44 20,733 $1,206.74$ 38,983 $1,584.22$ 50,927 282.87 10,383 $1,192.59$ 1,057 990.72 878 $1,187.72$ 4,100 $1,002.10$ 7,329 264.23 8,739 160.12 5,173 288.61 9,323 313.16 10,255 309.82 10,146 554.42 14,775 436.03 11,620	ation D-4. Area eroded $(A_{(1})$ Volume erodedCarbon (Kg/yr)Nitrogen (Kg/yr)36.441,168683,642.37111,1846,140277.0510,517564586.9422,2811,195697.7518,9421,052603.9422,9191,219193.056,998380693.4420,7331,0311,206.7438,9832,0751,584.2250,9272,707282.8710,3835391,192.591,057233990.728781931,187.724,1004101,002.107,329603264.238,739487160.125,173275288.619,323496313.1610,255515309.8210,146510554.4214,775754436.0311,620593	ation D-4. Area eroded $(A_{(1989-1942)})$ and rVolume erodedCarbonNitrogenPhosphorus (Kg/yr) (M^3/yr) (Kg/yr) (Kg/yr) (Kg/yr) 36.44 1,168685.29 $3,642.37$ 111,1846,140613.99 277.05 10,51756437.91 586.94 22,2811,19580.31 697.75 18,9421,05299.72 603.94 22,9191,219116.60193.056,99838036.83 693.44 20,7331,03179.801,206.7438,9832,075182.331,584.2250,9272,707155.62282.8710,38353942.091,192.591,057233102.02990.7287819384.751,187.724,10041075.881,002.107,32960396.10264.238,73948737.87160.125,17327524.19288.619,32349643.61313.1610,25551593.85309.8210,14651092.84554.4214,77575468.18436.0311,62059353.62	ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank hVolumeTotalerodedCarbonNitrogenPhosphorus(m³/yr)(Kg/yr)(Kg/yr)(Kg/yr)(Kg/yr)36.441,168685.2914,0193,642.37111,1846,140613.992,042,932277.0510,51756437.9194,143586.9422,2811,19580.31199,448697.7518,9421,05299.72286,726603.9422,9191,219116.60269,078193.056,99838036.8395,230693.4420,7331,03179.80204,4881,206.7438,9832,075182.33593,9531,584.2250,9272,707155.62282,829282.8710,38353942.0963,3301,192.591,057233102.021,593,657990.7287819384.751,323,8971,187.724,10041075.881,713,1081,002.107,32960396.101,271,018264.238,73948737.8746,779160.125,17327524.1978,813288.619,32349643.61142,052313.1610,25551593.85306,198309.8210,14651092.84302,932554.4214,775 <td>ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (\overline{H})Volume erodedCarbonNitrogenPhosphorus (Kg/yr)Total solids (Kg/yr)Total organics (Kg/yr)$36.44$1,168685.2914,0193,556$3,642.37$111,1846,140613.992,042,932406,496$277.05$10,51756437.9194,14338,602$586.94$22,2811,19580.31199,44881,781$697.75$18,9421,05299.72286,72696,972$603.94$22,9191,219116.60269,07885,106$193.05$6,99838036.8395,23019,211$693.44$20,7331,03179.80204,48872,606$1,206.74$38,9832,075182.33593,953166,643$1,584.22$50,9272,707155.62282,829170,291$282.87$10,38353942.0963,33039,527$1,192.59$1,057233102.021,593,65730,703$990.72$87819384.751,323,89725,506$1,187.72$4,10041075.881,713,10838,325$1,002.10$7,32960396.101,271,01839,031$264.23$8,73948737.8746,77928,348$160.12$5,17327524.1978,81322,112$288.61$9,32349643.61142,0</td> <td>ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (H) are listed iVolumeTotalTotalerodedCarbonNitrogenPhosphorussolidsorganicssediments(m³/yr)(Kg/yr)(Kg/yr)(Kg/yr)(Kg/yr)36.441,168685.2914,0193,55610,4643,642 3,7111,1846,140613.992,042,932406,4961,636,436277.0510,5175643,79194,14338,60255,541586,942,2811,19580.31199,44881,781117,667697.7518,9421,05299,72286,72696,972189,755603.942,9191,219116.60269,07885,106183,973193.94420,7331,03179,204,44872,60631,8811,206.7438,9832,075182,3359,330<td>ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table DVolume erodedNitrogen (Kg/yr)Phosphorus (Kg/yr)Total (Kg/yr)Total organics (Kg/yr)Total (Kg/yr)36.441,168685.2914,0193,55610,4643,1143,642.37111,1846,140613.992,042,932406,4961,636,436893,532277.0510,51756437,9194,14338,60255,5415,734586.9422,2811,19580.31199,44881,781117,66712,147697.7518,9421,05299.72286,72696,972189,75582,244603.9422,9191,219116.60269,07885,106183,97319,866193.056,99838036.8395,23019,21176,02036,691693.4420,7331,03179.80204,48872,606131,8811,1951,206.7438,9832,075182.33593,953166,643427,310200,3901,584.2250,9272,707155.62282,829170,291112,5375,804282.8710,38353942.0963,33039,52723,8041,8341,192.591,057233102.021,593,65730,7031,562,9541,303,347990.7287819384.751,323,89725,5061,298,3911,027,755264.238,73948737</td><td>ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (\overline{H}) are listed in Table D-1.Volume eroded (Kg/yr) (Kg/yr) (Kg/yr)Total solids organicsTotal organicsTotal sedimentsSand (Kg/yr)36.441.1686.85.2914,0193,55610,4643,1143,6343,642.37111,1846,140613.992,042,932406,4961,636,436893,532442,187277.0510,51756437.9194,14338,60255,5415,73424,837586.9422,2811,19580.31199,44881,781117,66712,14752,620697.7518,9421,05299.72286,72696,972189,75582,24460,545603.9422,9191,219116.60269,07885,106183,97319,86693,230193.056,99838036.8395,23019,21176,02036,69121,503693.4420,7331,03179.80204,48872,606131,8811,19570,0821,206.7438,9832,075182.33593,953166,643427,310200,390127,4471,584.2250,9272,707155.62282,829170,291112,5375,80452,691282.8710,38353942.0963,33039,52723,8041,83410,0251,92.591,057233102.021,593,65730,703<</td><td>ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table D-1.Volume erodedCarbon Nitrogen (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Clay (Kg/yr)36.441.168685.2914.0193.55610.4643.1143.6343.7163.642.37111.1846.140613.992.042.932406.4961.636.436893.532442.18720.717277.0510.51756437.9194.14338.60255.5415.73424.83724.970586.9422.2811.19580.31199.44881.781117.66712.14752.62052.901697.7518.9421.05299.72286.72696.972189.75582.24460.54546.965603.9422.9191.219116.60269.07885.106183.97319.86693.23070.876193.056.99838036.8395.23019.21176.02036.69121.50317.825693.4420.7331.03179.80204.48872.606131.8811.19570.08260.6041,206.7438.9832.075182.33593.953166.643427.310200.390127.44799.4731,584.2250.9272.707155.62282.829170.291112.5375.80452.69154.043282.8710.38353942.0963.33039.52723.80</td><td>ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table D-1.Volume erodedNitrogen (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Cola (Kg/yr)36.441,168685.2914,0193,55610,4643,1143,6343,7160.4563,642.37111,1846,140613.992,042,932406,4961,636,436893,532442,187300,71744.190277.0510,51756437.9194,14338,60255,5415,73424,83724,9703.150586.9422,2811,19580.31199,44881,781117,66712,14752,62052,9016.673697.7518,9421,05299.72286,72696,972189,75582,24460,54546,9658.136603.9422,9191,219116.60269,07885,106183,97319,86693,23070,8769.065193.056,99838036.8395,23019,21176,02036,69121,50317,8252.265693.4420,7331,03179.80204,48872,606131,8811,19570,08260,6045.8841,206.7438,9832,075182,33593,953166,643427,310200,390127,44799,4734.9401,842.250,9272,707155.62282,829170,291112,5375,80452,691</td></td>	ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (\overline{H}) Volume erodedCarbonNitrogenPhosphorus (Kg/yr)Total solids (Kg/yr)Total organics (Kg/yr) 36.44 1,168685.2914,0193,556 $3,642.37$ 111,1846,140613.992,042,932406,496 277.05 10,51756437.9194,14338,602 586.94 22,2811,19580.31199,44881,781 697.75 18,9421,05299.72286,72696,972 603.94 22,9191,219116.60269,07885,106 193.05 6,99838036.8395,23019,211 693.44 20,7331,03179.80204,48872,606 $1,206.74$ 38,9832,075182.33593,953166,643 $1,584.22$ 50,9272,707155.62282,829170,291 282.87 10,38353942.0963,33039,527 $1,192.59$ 1,057233102.021,593,65730,703 990.72 87819384.751,323,89725,506 $1,187.72$ 4,10041075.881,713,10838,325 $1,002.10$ 7,32960396.101,271,01839,031 264.23 8,73948737.8746,77928,348 160.12 5,17327524.1978,81322,112 288.61 9,32349643.61142,0	ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (H) are listed iVolumeTotalTotalerodedCarbonNitrogenPhosphorussolidsorganicssediments(m ³ /yr)(Kg/yr)(Kg/yr)(Kg/yr)(Kg/yr)36.441,168685.2914,0193,55610,4643,642 3,7111,1846,140613.992,042,932406,4961,636,436277.0510,5175643,79194,14338,60255,541586,942,2811,19580.31199,44881,781117,667697.7518,9421,05299,72286,72696,972189,755603.942,9191,219116.60269,07885,106183,973193.94420,7331,03179,204,44872,60631,8811,206.7438,9832,075182,3359,330 <td>ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table DVolume erodedNitrogen (Kg/yr)Phosphorus (Kg/yr)Total (Kg/yr)Total organics (Kg/yr)Total (Kg/yr)36.441,168685.2914,0193,55610,4643,1143,642.37111,1846,140613.992,042,932406,4961,636,436893,532277.0510,51756437,9194,14338,60255,5415,734586.9422,2811,19580.31199,44881,781117,66712,147697.7518,9421,05299.72286,72696,972189,75582,244603.9422,9191,219116.60269,07885,106183,97319,866193.056,99838036.8395,23019,21176,02036,691693.4420,7331,03179.80204,48872,606131,8811,1951,206.7438,9832,075182.33593,953166,643427,310200,3901,584.2250,9272,707155.62282,829170,291112,5375,804282.8710,38353942.0963,33039,52723,8041,8341,192.591,057233102.021,593,65730,7031,562,9541,303,347990.7287819384.751,323,89725,5061,298,3911,027,755264.238,73948737</td> <td>ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (\overline{H}) are listed in Table D-1.Volume eroded (Kg/yr) (Kg/yr) (Kg/yr)Total solids organicsTotal organicsTotal sedimentsSand (Kg/yr)36.441.1686.85.2914,0193,55610,4643,1143,6343,642.37111,1846,140613.992,042,932406,4961,636,436893,532442,187277.0510,51756437.9194,14338,60255,5415,73424,837586.9422,2811,19580.31199,44881,781117,66712,14752,620697.7518,9421,05299.72286,72696,972189,75582,24460,545603.9422,9191,219116.60269,07885,106183,97319,86693,230193.056,99838036.8395,23019,21176,02036,69121,503693.4420,7331,03179.80204,48872,606131,8811,19570,0821,206.7438,9832,075182.33593,953166,643427,310200,390127,4471,584.2250,9272,707155.62282,829170,291112,5375,80452,691282.8710,38353942.0963,33039,52723,8041,83410,0251,92.591,057233102.021,593,65730,703<</td> <td>ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table D-1.Volume erodedCarbon Nitrogen (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Clay (Kg/yr)36.441.168685.2914.0193.55610.4643.1143.6343.7163.642.37111.1846.140613.992.042.932406.4961.636.436893.532442.18720.717277.0510.51756437.9194.14338.60255.5415.73424.83724.970586.9422.2811.19580.31199.44881.781117.66712.14752.62052.901697.7518.9421.05299.72286.72696.972189.75582.24460.54546.965603.9422.9191.219116.60269.07885.106183.97319.86693.23070.876193.056.99838036.8395.23019.21176.02036.69121.50317.825693.4420.7331.03179.80204.48872.606131.8811.19570.08260.6041,206.7438.9832.075182.33593.953166.643427.310200.390127.44799.4731,584.2250.9272.707155.62282.829170.291112.5375.80452.69154.043282.8710.38353942.0963.33039.52723.80</td> <td>ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table D-1.Volume erodedNitrogen (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Cola (Kg/yr)36.441,168685.2914,0193,55610,4643,1143,6343,7160.4563,642.37111,1846,140613.992,042,932406,4961,636,436893,532442,187300,71744.190277.0510,51756437.9194,14338,60255,5415,73424,83724,9703.150586.9422,2811,19580.31199,44881,781117,66712,14752,62052,9016.673697.7518,9421,05299.72286,72696,972189,75582,24460,54546,9658.136603.9422,9191,219116.60269,07885,106183,97319,86693,23070,8769.065193.056,99838036.8395,23019,21176,02036,69121,50317,8252.265693.4420,7331,03179.80204,48872,606131,8811,19570,08260,6045.8841,206.7438,9832,075182,33593,953166,643427,310200,390127,44799,4734.9401,842.250,9272,707155.62282,829170,291112,5375,80452,691</td>	ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table DVolume erodedNitrogen (Kg/yr)Phosphorus (Kg/yr)Total (Kg/yr)Total organics (Kg/yr)Total (Kg/yr)36.441,168685.2914,0193,55610,4643,1143,642.37111,1846,140613.992,042,932406,4961,636,436893,532277.0510,51756437,9194,14338,60255,5415,734586.9422,2811,19580.31199,44881,781117,66712,147697.7518,9421,05299.72286,72696,972189,75582,244603.9422,9191,219116.60269,07885,106183,97319,866193.056,99838036.8395,23019,21176,02036,691693.4420,7331,03179.80204,48872,606131,8811,1951,206.7438,9832,075182.33593,953166,643427,310200,3901,584.2250,9272,707155.62282,829170,291112,5375,804282.8710,38353942.0963,33039,52723,8041,8341,192.591,057233102.021,593,65730,7031,562,9541,303,347990.7287819384.751,323,89725,5061,298,3911,027,755264.238,73948737	ation D-4. Area eroded $(A_{(1989-1942)})$ and mean bank height (\overline{H}) are listed in Table D-1.Volume eroded (Kg/yr) (Kg/yr) (Kg/yr)Total solids organicsTotal organicsTotal sedimentsSand (Kg/yr)36.441.1686.85.2914,0193,55610,4643,1143,6343,642.37111,1846,140613.992,042,932406,4961,636,436893,532442,187277.0510,51756437.9194,14338,60255,5415,73424,837586.9422,2811,19580.31199,44881,781117,66712,14752,620697.7518,9421,05299.72286,72696,972189,75582,24460,545603.9422,9191,219116.60269,07885,106183,97319,86693,230193.056,99838036.8395,23019,21176,02036,69121,503693.4420,7331,03179.80204,48872,606131,8811,19570,0821,206.7438,9832,075182.33593,953166,643427,310200,390127,4471,584.2250,9272,707155.62282,829170,291112,5375,80452,691282.8710,38353942.0963,33039,52723,8041,83410,0251,92.591,057233102.021,593,65730,703<	ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table D-1.Volume erodedCarbon Nitrogen (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Clay (Kg/yr)36.441.168685.2914.0193.55610.4643.1143.6343.7163.642.37111.1846.140613.992.042.932406.4961.636.436893.532442.18720.717277.0510.51756437.9194.14338.60255.5415.73424.83724.970586.9422.2811.19580.31199.44881.781117.66712.14752.62052.901697.7518.9421.05299.72286.72696.972189.75582.24460.54546.965603.9422.9191.219116.60269.07885.106183.97319.86693.23070.876193.056.99838036.8395.23019.21176.02036.69121.50317.825693.4420.7331.03179.80204.48872.606131.8811.19570.08260.6041,206.7438.9832.075182.33593.953166.643427.310200.390127.44799.4731,584.2250.9272.707155.62282.829170.291112.5375.80452.69154.043282.8710.38353942.0963.33039.52723.80	ation D-4. Area eroded ($A_{(1989-1942)}$) and mean bank height (H) are listed in Table D-1.Volume erodedNitrogen (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Total (Kg/yr)Cola (Kg/yr)36.441,168685.2914,0193,55610,4643,1143,6343,7160.4563,642.37111,1846,140613.992,042,932406,4961,636,436893,532442,187300,71744.190277.0510,51756437.9194,14338,60255,5415,73424,83724,9703.150586.9422,2811,19580.31199,44881,781117,66712,14752,62052,9016.673697.7518,9421,05299.72286,72696,972189,75582,24460,54546,9658.136603.9422,9191,219116.60269,07885,106183,97319,86693,23070,8769.065193.056,99838036.8395,23019,21176,02036,69121,50317,8252.265693.4420,7331,03179.80204,48872,606131,8811,19570,08260,6045.8841,206.7438,9832,075182,33593,953166,643427,310200,390127,44799,4734.9401,842.250,9272,707155.62282,829170,291112,5375,80452,691

 Table D-3.
 Annual component loadings (Kg/yr) for each land loss polygon.
 Loadings (except total volume eroded) were calculated