Department of Natural Resources MARYLAND GEOLOGICAL SURVEY Jeffery P. Halka, Acting Director

COASTAL AND ESTUARINE GEOLOGY FILE REPORT NO. 10-02

SEDIMENTATION ANALYSIS OF NEW GERMANY LAKE

By

Richard A. Ortt, Jr.

and

Darlene V. Wells

Prepared For

Department of Natural Resources

APRIL 2009

Revised November 2009

EXECUTIVE SUMMARY

In response to a request by the Department of Natural Resources, Maryland Park Service and Engineering and Construction, Maryland Geological Survey (MGS) was charged to study the sedimentation of New Germany Lake located in Garrett County in the State of Maryland.

Sediment cores were collected from the lake, sediment accumulation volumes were determined and physical and chemical characteristics of the sediment were analyzed.

Sediment cores were collected in October 2008. The cores were analyzed and a sediment accumulation thickness ranging from 0.56 meters to 1.16 meters [1.8 to 3.8 feet] was observed throughout the cores. The calculated amount of sediment accumulated since the construction of New Germany Lake is currently a maximum of 33,191 cubic meters [43,412 cubic yards] within the confines of the current shoreline.

Four cores were analyzed for historical patterns in lead and zinc. Three of these cores displayed patterns that suggest only a portion of the sediment has been deposited since the construction of the New Germany Lake Dam and the remaining sediment is from the original Swauger's Mill dam.

An elemental analysis was performed on thirty sub-samples from the sediments in the collected cores. The only elements which showed enrichment above national screening levels were aluminum, iron, and barium. However, the elevated levels of these elements are most likely due to the analysis methods which were used.

Three samples were analyzed for priority pollutants using EPA 8270 methods. These samples all reported results below the detection limits for the laboratory equipment.

TABLE OF CONTENTS

Executive Summary Table of Contents Introduction Site Description Geological Background **Study Objectives** Methodology Core Collection Sediment Documentation and Sampling **Physical Property Analyses Elemental Analyses** Priority Pollutant Analyses Results and Discussion Sediment Accumulation **Elemental Analyses** Priority Pollutants Analyses Delta Growth Analysis Conclusions and Recommendations Acknowledgments References Appendices A. Core Locations B. Core Logs C. Core Stratigraphy D. Pesticide Analysis Data E. EPA 8270 Analysis Data F. Elemental Analysis Data G. Physical Properties Analysis Data

H. Analysis of Cores 9, 11, and 15

Figure 1. New Germany Lake. Aerial Photography is from 2007 NAIP imagery. Blue Shoreline is digitized from USGS 1946 Topography Maps. Yellow Symbols indicate sediment cores collected in this study.

SITE DESCRIPTION

New Germany Lake is a manmade twelve acre impoundment on Poplar Lick Run in New Germany, Maryland. Upstream and downstream reaches of the contributing and surrounding waterways suggest that this site was once a channelized stream approximately 3.0 to 4.6 meters [10-15 feet] in width and 0.3 to 0.6 meters [1-2 feet] in depth. Around 1837-1847, a milldam and resulting millpond were constructed at what appears to be the same site as the current dam (USGS 1899, 1904, 1938 topographic maps). That dam was lower in height than the current dam; however, it still created a pond of approximately 9 acres (USGS 1899, 1904 topographic maps). Poplar Lick Run enters the lake at the north, and continues southward to the Savage River upon exiting the lake at the dam located on the south end of the lake. The marsh located at the north end of the lake is likely caused by the impoundment and was not originally found in that area (MGS, 1902). Without bathymetry and accurate topography from that time, it is impossible to determine the original depth of this initial impoundment. In the 1933-1935 timeframe, a new earthen dam was constructed which raised the level of the lake to its current height. The lake was very rarely lowered after its final construction in the 1930s. In 2008, DNR performed some safety upgrades and maintenance on the dam which did not alter the water level of the lake. While performing these upgrades, it was noted that the drain pipe for the dam was still clearly above the sediment level. While no evidence has been collected that documents the growth of the headwaters marsh, a cursory observation shows a dendritic stream network with spatially equal amounts of water as there was "land". The streams in this marsh appear to be fed as much by springs as from surface water, and the channels are 0.75 to 0.90 meters [2.5-3 feet] deep with coarse grained sediments throughout. Except for the manmade beach area, the shorelines of the lake do not appear to be marked by much erosion.

There are four known anthropogenic activities on the lake which may have influence over the sediments found in the impoundment. Timbering operations were prevalent throughout the area surrounding Poplar Lick Run prior to, during, and after the construction of the dam. Additionally, a majority of the land located immediately west of New Germany Lake was being used for agriculture. These operations would have increased the flow of sediment into the drainage basins. There also was a sawmill located approximately 400 meters [437 yards] upstream from the current lake's headwaters. This sawmill was in operation beginning sometime around 1800 and ceased operations in the 1950s. Evidence of sawdust was in the reconnaissance cores collected in September 2008. Finally, the lake has been used as a recreational facility since 1935. The largest sediment impact from this activity is the import of sand to the current and historical manmade beach areas.

GEOLOGIC BACKGROUND

New Germany Lake occupies a basin developed in the Pocono Formation. The lake's western shore roughly traces the contact between the Pocono and the Greenbrier Formations, at the base of Meadow Mountain. Further upslope on Meadow Mountain, above the Greenbrier Formation, are exposures of the Mauch Chunk Formation, capped by the Allegheny Formation and Pottsville Group. The sedimentary sources to the New Germany Lake watershed are primarily confined to these four geologic units.

The lake is surrounded on the north, east and south sides by soils developed in the Pocono Formation, which consists of sandstone, siltstone, shale and some conglomerate. The Pocono typically weathers to a grayish, sandy soil to a sandy loam, containing fragments of sandstone and conglomerate cobbles. Pocono soils usually range from 0.38 to 0.61 meters [15-24 inches] in depth and stone fragments and boulders are common locally. The Greenbrier and Mauch Chunk Formations are similar in composition, consisting of shale and sandstone, although the Greenbrier is more calcareous, containing a limestone member. Along hill slopes these shales and limestones weather to a heavy red loam or clay with abundant sandstone boulders. Heavy, yellow and brown clay soils develop in valleys underlain by the Greenbrier and Mauch Chunk Formations. Because these formations lay upslope from the lake valley, they would be expected to contribute red and yellow clays, sand, and rock fragments to the lake's sediment burden. Similar materials would be expected to be derived from the Allegheny Formation and Pottsville Group which make up the western hilltops along the lake. (MGS, 1902)

STUDY OBJECTIVES

The objectives for this study were:

- 1) Determine the sediment accumulation within the New Germany State Park Lake.
- 2) Document the physical and elemental characteristics of the sediment.
- 3) Identify any priority pollutants which may be contained in the sediment.

METHODOLOGY

Core Collection

Cores were collected along five transects of the lake and one core on the downstream river bank. The lake cores were spaced so that one core corresponded to the center of each transect and the two other cores corresponding to the halfway points between the shorelines and the the centerpoint of each transect. Coring locations are shown and documented in Figure 1 and Appendix A. Sediment cores were collected in aluminum liners attached to a vibracore head supplemented with 113 kilograms [250 pounds] of added weight. Cores were driven to refusal, capped, labeled, and retrieved. Horizontal control was provided through a Thales Navigation ProMark 3 GPS supplemented with satellite based augmentation system (SBAS) differential corrections providing a real-time horizontal accuracy of 2-5 meters [6-15 feet]. Horizontal positions were recorded in the Universal Transverse Mercator (UTM) system based upon the North American Datum of 1983 (NAD83). Core logs include depth of water, total depth driven, and GPS coordinates of each core. All cores were collected between October 6, 2008 and October 10, 2008.

Sediment Documentation and Sampling

Cores were drained, split, and documented within 24 hours of collection. Each core was drained of water to the sediment-water interface and then cut in half lengthwise to expose the collected sediments. The sediments were characterized and documented in sediment logs and photographs. These sediment logs are in Appendix B. The photographs are maintained separately by the Maryland Geological Survey. The cores were sub-sampled for further laboratory analysis with sampling intervals annotated on the core logs and on the sample collected at discrete intervals within the cores where physical changes were identified. Samples collected for priority pollutants were collected equally along the length of the deposited sediment. All samples were kept in a cooler to maintain a temperature between 8-14° C [46-57° F].

Physical Property Analyses

Selected sub-samples were analyzed for water content, bulk density, and grain size (gravel, sand, silt, clay contents). Analyses were performed as soon as possible after sample collection, and all samples were refrigerated in sealed Whirl-PakTM plastic bags prior to analysis.

In preparation for grain size analysis, sediment samples underwent a cleaning process to remove soluble salts, carbonates, and organic matter. These constituents may interfere with the dispersal of individual sediment particles and, thereby, affect the subsequent separation of the sand and mud fractions. All sediment samples were treated first with a 10% solution of hydrochloric acid (HCl) to remove carbonate material, such as shells, and then with a 6% or 15% solution of hydrogen peroxide (H_2O_2) to remove organic material. A 0.26% solution of the dispersant sodium hexametaphosphate ((NaPO₃)₆) was then added to ensure that individual grains did not clump, or flocculate, during pipette analysis.

For each sample, the coarse fraction was separated from the mud fraction by wet-sieving through a 4-phi mesh sieve (0.0625 mm, U.S. Standard Sieve #230). The sand fraction (i.e., particles > 0.0625 mm) was dried and weighed. The mud fraction (i.e., sediment passing through the #230 sieve) was analyzed using a pipette technique to determine the proportions of silt and clay (Krumbein and Pettijohn, 1938). The mud fraction was suspended in a 1000-ml cylinder in a solution of 0.26% sodium hexametaphosphate. The suspension was agitated and, at specified times thereafter, 20 ml pipette withdrawals were made. The rationale behind this process is that larger particles settle faster than smaller ones. By calculating the settling velocities of different sized particles, withdrawal times can be determined. At the time of withdrawal, all particles larger than a specified size have settled past the point of withdrawal. Sampling times were calculated to permit the determination of the total amount of silt and clay (4 phi) and clay-sized (8 phi) particles in the suspension. Withdrawn samples were dried at 60°C and weighed. From the dry weights, the percentages of gravel, sand, silt, and clay were calculated for each sample and classified according to Shepard's (1954) nomenclature, or, if sample contained gravel, according to Folk's (1954) nomenclature. Shepard's classification, which is widely used in sediment studies, is based on the relative percentages of the sand, silt and clay components of the sediment. Sediments are classified as one of 10 classes according to Shepard's ternary diagram (Figure 2). Folk's classification of sediments is based on textural composition of gravel, sand and mud (silt + clay) fractions and consists of 15 classes. (Figure 3).

Figure 2. Shepard's (1954) classification of sediment types.

Figure 3. Folk's (1954) classification of sediments.

Elemental Analyses

Activation Laboratories, Ltd. (Actlabs) of Ancaster, Ontario, Canada, analyzed the sediment samples for 48 elements. Concentrations of the elements were determined by one or both of two methods: Instrumental Neutron Activation Analysis (INAA) and a Total Digestion – ICP Analysis. For the Total Digestion method, Actlabs used a four-acid, "near total" digestion process, followed by analysis of the digestate by inductively coupled plasma emission spectroscopy (ICP-OES). The four-acid digestion employed perchloric (HClO₄), hydrochloric (HCl), nitric (HNO₃), and hydrofluoric (HF) acids. The digestion method is similar to EPA Method 3052 used for total decomposition of samples.

Quality assurance was checked using the method of bracketing standards (Van Loon, 1980). The standard reference materials (SRMs), similar to the sediments being analyzed, were included every 8 samples and submitted to Actlabs as blind unknowns. Actlabs' results of the analyses of the SRMs are listed in Appendix F.

The authors point out that the analytical method used in this study for the elemental determinations is not appropriate for regulatory applications that require the use of leachate preparations (*i.e.*, EPA Methods 3050, 3051, 1311, 1312, 1310, 1320, 1330, 3031, or 3040). This method is appropriate for those applications requiring a total decomposition for research purposes (*i.e.*, geological studies, mass balances, analysis of Standard Reference Materials) or in response to a regulation that requires total sample decomposition.

Priority Pollutant Analyses

Three collected core samples were homogenized and they were analyzed using EPA 8270 standards for priority pollutants. These samples were collected, stored in acid-washed glass containers with Teflon lid liners, and analyzed by the Maryland Department of Health and Mental Hygiene Laboratories in Baltimore, Maryland.

RESULTS AND DISCUSSION

Sediment Accumulation

Sixteen cores were collected from New Germany Lake and one core was collected from the downstream river bank. The core logs, photographs, physical properties, and elemental properties were used to determine the core depth of various layers including historical soil, coarse grained deposits, accumulated fine grained sediments, and a dominant organic layer.

Identification of these selected layers was chosen to aid in the determination of accumulated sediment within the lake. The historical soil layer is defined through the dominant soil types and geology found in the local vicinity and confirmed through the collection of the downstream riverbank core. This layer is visibly and textually identifiable through its dark red sandy soil structure with included gravel, cobbles and rock conglomerates. There are no embedded organic materials and the water content is below twenty percent. Eight of the cores penetrated to the depth of the historic soil level. The coarse grained deposit layer is clearly identifiable through its physical characteristics. This layer is predominately yellow or grey in color consisting of a high percentage of sand and occasionally including organic material. This layer is believed to be a subaerial deposit formed by the weathering of the uphill sediments and their subsequent deposition on the valley floor through wind and rain events prior to any water inundation. This layer was observed in fifteen of the cores. The accumulated fine grained sediment layers, identified as soft mud and firm mud, are the materials which have collected since an impoundment of waters created a subaqueous sedimentary environment. The impoundment slowed the flow of waters and decreased the energy in the environment allowing the fine grain particles to fall out of the water column and collect on the bottom of the lake. These layers are clearly identified through the sediment's physical properties demonstrated by an increase in clay and silt percentages and an increase in water content due to its subaqueous formation. Furthermore, this layer is identified through the occasionally observed striations from episodic depositional events. Organic material is found throughout this layer. These sedimentary deposits were found in all of the cores within the lake. The last layer which was identified is a layer which was extremely high in organic material. In several cores, this layer included sawdust that was most likely deposited by a storm event relocating material from an

upstream sawmill. In other cores this layer was a dense leaf mat or a heavy accumulation of sticks. Identification of this layer was found in fifteen of the sixteen cores from the lake.

A description of the selected facies in the collected cores is best visually summarized in the graphs in Appendix C. Figure C-1 is a bar graph which depicts the location of these layers from the sediment surface throughout the depth of the collected cores. Figure C-2 is a bar graph which depicts the location of these layers from the surface of the lake which aligns all of the layers to the same vertical plane. Table C-1 presents the interpreted data from the cores.

A majority of the cores collected follow clear definable patterns of sedimentation. From the lake bottom downwards, the topmost sediments are mostly silts and clays with organic material deposited throughout. The sediments generally become more consolidated with depth. These silts and clays are the sediments which have collected since the initial impoundment of the waters. Below the silts and clays is a thin layer of coarse sand, ranging from 2-33cm [1-12 inches] in thickness. This layer of coarse sand is likely the deposits created by wind and rain erosion of the upslope soils which were mobilized and deposited into the valley prior to the creation of any pond or lake. Below the layer of coarse sand is the historical soil horizon.

Cores 8, 12 and 13 demonstrate a clear sedimentary pattern in recent sediments; however, at depth the sediments appear to have been reworked. From the lake bottom downwards, the topmost sediments are mostly silts and clays with organic material deposited in layers. These sediments become more consolidated with depth. Below the silts and clays there is a deposit of coarse grained material which varies greatly in thickness from at least 8-55 cm [3-22 inches]. The coarse grained materials are characterized by predominantly medium to coarse sands with pockets of organic material and mud lenses. The organic material and mud lenses are most likely due to these cores being near the headwaters of the initial millpond or even in the floodplain or meanders located upstream of the millpond or in the case of Core 8, it may have been in the historic stream channel. In all cases this deposit would be subject to reworking from storm events. The lack of fine sediments suggests that these coarse grained deposits were mobilized under high energy events which indicate that these are alluvium deposits.

A very dense organic layer was detected in all cores with the exception of core 5. This organic layer is likely a distinct event or series of events which occurred within the drainage basin. There is not enough data to draw any conclusions from this layer.

The accumulated sediment is spatially variable, dominantly dependent on the pre-existing topography of the valley and the current bathymetry of the lake. In general, there is an 81 cm [range: 67-93 cm] [31 inches] sediment deposition at the southerly end of the lake slightly decreasing to a 68 cm [range: 56-92 cm] [26 inches] sediment deposition in the middle of the lake and increasing to a 88 cm [range: 56-106 cm][34 inches] sediment deposition at the north end of the lake. The increase in sediment deposition at the north end of the lake also is identified with an increase in silt content of the deposited sediments. This is anticipated as silts need more energy to stay suspended in the water column than clay particles and therefore they deposit to a greater extent closer to the headwaters. This increase is also an indication of the lake.

Aerial imagery from 2007 maps the spatial area of New Germany Lake to be 41,700 square meters (10.3 acres). Using this area, the lake was divided into thirds, measuring upstream from the dam, and areas and volumes were calculated. While it is likely that the accumulated sediment varies spatially and tapers to a much thinner deposit near the shorelines, this calculation does not extrapolate those changes as the extent of deposit and rate of change is unknown. The calculations use the average accumulated sediment thickness within the area multiplying it by the planar area of the current lake. This will yield an overestimate of the actual accumulated sediment volume in each area; however, it will underestimate the total volume of sediment

collected as it does not factor in the sediment which has collected in the headwaters of the lake. Table 1 below presents this data. The total accumulated sediment in New Germany Lake within the current shoreline is 33,191 cubic meters [43,412 cubic yards].

Section	Distance from	Average	Area	Calculated
	Dam	Accumulated	(Square Meters)	Accumulated
	(Meters)	Sediment		Sediment Volume
		(Meters)		(Cubic Meters)
South	0-125	0.81 [0.67-0.93]	9500	7695
Middle	125-306	0.68 [0.56-0.92]	14200	9656
North	306-530	0.88 [0.56-1.16]	18000	15840
Total	0-530		41700	33191

Table 1. Sediment accumulation within New Germany Lake.

Elemental Analyses

Analytical results are presented in Table F-2.

Because the samples were analyzed using a total decomposition method (four-acid digestion), the concentration values should not be compared to threshold limits in the NOAA SQuirTs (Screening Quick Reference Tables) (Buchman, 2008). The values listed in the NOAA tables are based on EPA methods which allow partial decomposition of sediment samples and thus reflects that portion of any element that may become biologically available/mobile under extreme environmental conditions. For example, the NOAA tables list background levels in soil/sediments for aluminum (Al) as 0.26% which reflects the average aluminum (Al) biologically available. However, our results for aluminum (Al) range from 2.85% - 7.17%, reflecting total recovery of the element by our digestions method. Aluminum (Al) is a major component of most minerals found in native rock and soils. In addition to aluminum (Al), iron (Fe) and barium (Ba) exceed the SQuirTs background levels by an order of magnitude.

Table F-4 presents a correlation matrix for elemental concentrations and textural components (Water content, bulk density, gravel, sand, silt and clay). Most elements are significantly correlated with one or more textural components, reflecting some textural control over the relative abundance of these elements. For example, many elements show a significantly strong inverse relationship with sand indicating that these elements are found in the mud (silt+ clay) fraction of the sediments. Hafnium (Hf) and Uranium (U) show the least significant correlations with the other parameters measured.

Because of the wide range of sediment types analyzed, comparisons of absolute metal concentrations between the sediments are very difficult due to variation in textural characteristics. Likewise, assessing down core changes in elements is further complicated since there is a significant downcore change in the textural character of the sediments (example: Core 4, Table G-1).

To reduce the effect of grain size, metal concentrations may be discussed in terms of enrichment factors (EF). The use of enrichment factors also allows for comparisons of sediments from different environments and the comparisons of sediments whose trace metal contents were obtained by different analytical techniques (Cantillo, 1982; Hill and others, 1990; Sinex and Helz, 1981). Once metal data are "normalized" with respect to textural differences, trends in the spatial distribution of metals are easier to realize and interpret.

Enrichment factor is defined as:

$$EF_{(X)} = \frac{(X / N)_{sample}}{(X / N)_{reference}}$$

where:

 $EF_{(x)}$ is the enrichment factor for the metal X; $X/N_{(sample)}$ is the ratio of the concentrations of metal X to major metal N (Fe or Al) in the sample; $X/N_{(reference)}$ is the ratio of the concentrations of metal X to major metal N (Fe or Al) in a reference material, such as an average crustal rock.

Both aluminum (Al) and iron (Fe) were chosen as the element for normalizing because anthropogenic sources for these metals are small compared to natural sources (Helz, 1976). Average continental crust is used as the reference material (Taylor, 1964). Taylor's averages have been used in other studies involving various sedimentary environments, including fresh water reservoirs (Ortt et al., 1999; Sinex and Helz, 1981; Wells et al., 2007).

EF values calculated using aluminum as the normalizing element are similar to those values using iron as the normalizing elements (Table 2). EF values of one or less indicate no or under-enrichment of that element with respect to continental crust rock. In both sets of EFs, most elements show no or little enrichment (i.e. EF < 2). However, several elements are greatly enriched with respect to the reference material. The enrichment of zinc (Zn) and lead (Pb) is due, in part, to anthropogenic sources; both of these elements have a regional atmospheric source component related to man activities. The enrichment of both elements decreases with depth identifying that concentrations of these metals have changed over time (Figure 4). Other elements having high EF values include arsenic (As), cesium (Cs), hafnium (Hf), antimony (Sb), uranium (U) and lutetium (Lu). The high enrichment may reflect a natural regional abundance of the elements as they do not exhibit any significant downcore change. For example, a source of hafnium (Hf) is zircon, a mineral found in the parent rock of the study area.

	Mean E	F using		Mean EF using	
Element	Fe	Al	Element	Fe	Al
Р	0.62	0.53	Sb	10.64	9.86
Cr	1.05	0.85	Rb	1.86	1.44
Cu	0.52	0.42	Sc	0.76	0.61
Fe		1.02	Sr	0.30	0.24
Mn	0.50	0.49	Ti	0.94	0.79
Ni	0.69	0.56	Th	1.91	1.53
Pb	3.46	2.92	U	3.10	2.43
Zn	2.62	2.04	V	0.78	0.70
Al	1.24		Y	1.48	1.16
As	9.13	9.23	La	2.31	1.79
Ba	2.18	1.61	Ce	1.88	1.48
Со	0.87	0.72	Nd	1.70	1.23
Cs	2.99	2.16	Sm	1.44	1.13
Eu	1.83	1.42	Yb	1.70	1.31
Hf	6.77	5.25	Lu	2.66	2.08
Mg	0.24	0.19			

Table 2. Comparison of EF values using Fe and Al, respectively, as the normalizing metal.Values shown for each element are an average of all samples.

Figure 4. Plot of EF (nomalized using Fe) for Zn and Pb in core 4.

The downcore plot of lead (Pb) and zinc (Zn) in Core 4 also allows a general conclusion regarding the sediment history in that core. Both lead (Pb) and zinc (Zn) environmental levels increased dramatically in the early 1900s due to the industrial use of these metals and increased atmospheric levels due primarily to coal-powered factories and power plants and automotive exhaust. A peak in lead (Pb) concentrations during the mid-1970s is also a continental pattern observed in sediments caused by the removal of alkyl-lead from gasoline. (Owens and Cornwell, 1995) The lead (Pb) and zinc (Zn) profiles in Core 4 (Figure 4) demonstrate this trend with a significant increase in both lead (Pb) and zinc (Zn) levels between the samples collected at 16-34cm depth and 12-16cm depth. A peak in the lead (Pb) data is also displayed in the 12-16cm depth sample. While the sampling intervals used for this study are too gross for determining the exact chronology of the sediments in this core, it can be generalized that sediments deeper than 25cm [range: 16-34cm] [10 inches] are older than the early 1900s, and they are from the original Swauger's millpond. Conversely, the sediments shallower then 25 cm [range: 16-34cm] [10 inches] have been deposited since the early 1900s, and they are mostly from post-1935 dam construction.

Priority Pollutants (Semi-Volatile Organics) Analyses

Samples from cores 1, 11, and 15 were created using sediment collected along the length of the core. These samples were submitted to DHMH for EPA 8270 analyses. The report identified only pesticides from this submission (Appendix D). A second set of the same samples was submitted to DHMH for EPA 8270 analyses (Appendix E). These samples were processed using the EPA 8270 method with the exception that the holding time between collection of the samples and the analysis of the samples was exceeded. All results showed that the levels of all of the analyzed pollutants were below detection limits.

Delta Growth Analysis

Maps and aerial images from 1899, 1904, 1938, 1944, 1962, 1995, and 2007 were analyzed to document the change in the northern boundary of New Germany Lake. This area is subject to a faster sedimentation rate as it is the area where there is the greatest decrease in energy. Unfortunately, the scales, datums, and quality of the maps and images differ enough that absolute measurements are difficult to compare; however, the general trend can be observed. A point was selected where Poplar Lick Run intersects the south side of Twin Churches Road. From that point, distances were measured to the shoreline of the northern most portion of New Germany Lake. (Table 3)

Year	Document	Scale	Distance Measured (Meters)
1899	USGS Topo	1:62,500	330
1904	USGS Topo	1:62,500	342
1938	USGS Topo	1:62,500	349
1938	Imagery	1:20,000	202
1944	USGS Topo	1:24,000	207
1962	Imagery	1:20,000	211
1995	Imagery	1 Meter	238
2007	Imagery	1 Meter	238

Table 3. Measurement of Northern Lake Boundary migration.

The three measurements from the 1899, 1904, and 1938 topographic maps yield a southerly migration of 19 meters [62 feet] over a 39 year period. It is unknown when the actual field surveys were

performed for these maps; however, the 1938 topographic map shows the New Germany Lake at its pre-1933-1935 construction extent. These measurements provide a rough calculation of 0.5 meter/year [1.6 feet/year] growth of the headwaters delta.

The five measurements since the construction of the new dam yield a 36 meter [118 feet] southerly migration over a 69 year period. This calculates to an average 0.5 meter/year growth [1.6 feet/year] of the headwaters delta.

CONCLUSIONS AND RECOMMENDATIONS

Sediment Accumulation

New Germany Lake has accumulated a maximum of 33,191 cubic meters [43,412 cubic yards] of sediment within its current acreage. These sediments range from 0.56-1.16 meters [1.8- 3.8 feet] in thickness throughout the majority of the lake with the most sediment accumulating in the northern portion of the lake. Additionally, the delta formed in the headwaters of the lake has shown a history of growth at 0.5 meters per year [1.6 feet/year].

Sediment Physical Properties and Chemical Properties

The accumulated sediment is generally a silty-clay. Towards the southern portion of the lake, there is an abnormally higher amount of sand in the sediment which is likely to be from the historical and current man-made beaches. Towards the northern portion of the lake, silt dominates over the clay percentages and changes the sediment classification to clayey-silt.

Chemical analyses document that the sediments are fairly consistent with average crustal standards. There is an elevation of rare earth metals; however, these metals do not reach any levels for national screening criteria. The elevation of these metals is likely due to localized geologic composition.

Priority Pollutants (Semi-Volatile Organics) Pollution

No forms of sediment pollution were identified. While the second analysis of priority pollutants using EPA 8270 methods was outside of the holding period, there were no pollutants detected via the analysis. Additional research with Maryland Department of the Environment confirmed that there are no known pollutants identified within the area surrounding the park.

Recommendations

No further studies are recommended to document sediment accumulation within New Germany Lake.

Should studies of this type be extended to other small-watershed lakes similar to this study area, it is recommended to take additional samples throughout the cores and analyze them for both physical characteristics and chemical composition. The additional samples would document downcore changes and assist in interpretation of the cores.

ACKNOWLEDGEMENTS

The authors extend their gratitude to the following individuals for assisting in the creation of this report. Ranger Michael Gregory from New Germany State Park assisted in logistical coordination, boats, and field laboratory space. Katie Offerman of MGS performed all physical sediment analyses. Lamere Hennessee, Heather Quinn, Katie Offerman, and Dave Drummond collected, logged, documented, and

sampled all cores during the field collection. Robert Conkwright Jr. provided the geologic history of the region. Acknowledgements are also given to Robert Conkwright, Jr., Jeffrey Halka, Butch Norden, Michael Gregory, Nita Settina, Heather Quinn, and Lamere Hennessee for their review and comments on this report.

Funding for this study was provided by the Maryland Department of Natural Resources.

REFERENCES

Buchman, M.F., 2008, NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Adm., 34 pages.

Cantillo, A.Y., 1982, Trace elements deposition histories in the Chesapeake Bay: Unpubl. Ph.D. dissertation, Chemistry Dept., Univ. of Maryland, College Park, MD, 298 p.

Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature: Journal of Geology, v. 62 (4), p. 344-359.

Helz, G.R., 1976, Trace element inventory for the northern Chesapeake Bay with emphasis on the influence of man: Geochim. Cosmochim. Acta, v. 40, p. 573-580.

Hill, J.M., Hennessee, E.L., Park, M.J., and Wells, D.V., 1990, Interpretive techniques for assessing temporal variability of trace metal levels in estuarine sediments (Abst): Goldschmidt Conference, Hunt Valley, Md.

Maryland Geological Survey, 1902, Garrett County: Baltimore, MD, 340 p.

Ortt, Jr., R.A., Kerhin, R.T., Wells, D.V., and Cornwell, J., 1999, Bathymetric Survey and Sedimentation Analysis of Loch Raven and Prettyboy Reservoirs: Maryland Geological Survey, Coastal and Estuarine Geology Program, File Report 99-04.

Owens, M. and J.C. Cornwell, 1995, Sedimentary evidence for decreased heavy metal inputs to the Chesapeake Bay: Ambio 24: 25-27.

Sinex, S.A., and Helz, G.R., 1981, Regional geochemistry of trace elements in Chesapeake Bay sediments: Environ. Geol., vol. 3, p. 315-323.

Taylor, S.R., 1964, The abundance of chemical elements in the continental crusts- a new table: Geochim. Cosmochim. Acta, vol. 28, p. 283-294.

Wells. D.V, Hill, J., Ortt, Jr., R. and Van Ryswick, S., 2007, Sediment Mapping and Sediment Oxygen Demand of Triadelphia and Rocky Gorge Reservoirs. Coastal and Estuarine Geology Program, FR 07-02.

Appendix A

Core Locations

	UTMNA	D83Meters		
Core	Easting	Northing	Water Depth FT	Water Depth Meters
1	661132	4388726	6.9	2.09
2	661127	4388734	6.6	2.01
3	661143	4388716	7.0	2.13
4	661173	4388794	4.9	1.49
5	661153	4388800	6.7	2.04
6	661138	4388810	5.4	1.65
7	661189	4388881	3.8	1.16
7A	661190	4388882	4.0	1.22
8	661200	4388876	5.1	1.55
9	661216	4388870	5.1	1.55
10	661249	4389044	2.5	0.76
11	661268	4389030	2.8	0.85
12	661279	4389026	2.5	0.76
13	661335	4389149	1.1	0.34
14	661351	4389139	1.4	0.43
15	661366	4389124	1.5	0.46
16	661110	4388545	0.0	0.00

Table A-1. Locations and Water Depths of collected cores.

Figure A-1. Map depicting the location of the collected cores. Shoreline is approximate from 1944 USGS topographic map.

Appendix B

Core Logs

Plot 2 PROJECT: NGSP CORE ID: Core 2 DATE COLLECTED: 10708 INITIAL LENGTH: (cm)COMPACTION: (cm)FINALLENGTH: 123, SCM (cm) DATE OPENED: 10 7108 Sampled Grain Interval Size ÷

(cm)

(cm)

(cm)

GRAPHIC LOG

PZOF2

GRAPHIC LOG

***. 7

83C.

PROJECT NGSP	
CORE ID: CORE	<u> </u>
DATE COLLECTED: 10 708	
INITIAL LENGTH:	(cm)
COMPACTION:	(cm)
FINAL LENGTH: 154,5 cm	(cm)
DATE OPENED: 10 808	
NOTES:	

Sampled Interval	Grain Size
	1
···	<u>+</u>
	
· ·	
· · · · · ·	
	ļ
	;
······································	
······································	

PLOFI

Donth (am)	GRAPHIC LOG	PIOFI
	-0-12 an PRO	IECT: NGSP
	$5Y2/1 \rightarrow 5Y3/2$ COR	EID: <u>COR 4</u>
	V. Sl. gritty soupymed - DAT	E COLLECTED: <u>10 7 08</u>
	V. soft organic water INII	IAL LENGIH:(cm)
	12-16 CM FINA	LIENGTH: (cm)
	+12 water v St Sandy mud DAT	E OPENED: IDEADS
	w/ non-arity mud leases; plant	root matters and soft
· · · · · · · · · · · · · · · · · · ·	-16-16-34 cm NOT	ES.
00	10 YR 4/2 W/ 5 YR 5/2	
20	mottles, very firm	·
	s and day	
	si sonay dog,	
2.		
30	(-32)= big stick ~ 74 diam.	Sampled Grain
	- 34	
	34 cm	12-16
40-	SYR5/2; mode Firm to 54cm	
	mod sondy clay/mod fairly	34-54
	Cottaction	54-67 /
	andsive	67-82.5 /
Q		
	- change in firmness @ 54cm	
	and ealthet 54-67 cm	
100 -	Chickey waters conterat: Sources)	
	(inquer occur around roop ver)	
	>- big rack just above 67 cm.	
	- 67 texture change	· ·
40-	67-825 cm.	
	CURED IN NO ALS	
- A	Darkel	
	Pockets; Very Sandy Clayor	
80 - 0	mua, very firm from ~73 1	
82.5 200000	-bottom bottom - but racky -	
	might affect itrumes	5,
	roots	
au		
I I I I I I I I I I I I I I I I I I I		
		· · · · · · · · · · · · · · · · · · ·
1 mil		
	and the second	

Plofi

GRAPHIC LOG Depth (cm) PROJECT: NGSP 0-30 an = 5 y z/1CORE ID: -5 DATE COLLECTED: 10/7/2008V. Soft, V. Soupy, INITIAL LENGTH: (cm)V. slightly gritty mod; COMPACTION: (cm)plant motter/roots (SAV?) 10 FINAL LENGTH: (cm)DATE OPENED: 10/8/2008sl. firmer ~ 30 cm gradational NOTES: 20 30 30 30 - 48 = 10 YR 3/2Sampled Grain Interval Size sh firm; fairly smooth - v. sl. 0-30 V gritty mud/clay; cohesive 30-62 40 62-76 V 76-83 Фþ 48 - color change 48-62 cm = 10 YR 4/2 SD mod. firm; v. sl. gritty mud not much in way of organics 60 -62 62-68cm= 10 YR 4/2 68 root structure, wood (structure ?) dorker than what have seen previously; small stick 76 color change 68-76 10 YR 42; Mod - Very Firm; Firmer u/ depth; bits of sticks, leaves; mod. sondymuk вo Ho-89 = 10 YR 5/4 w/ N2 (ag) much gandier from above - V. sondy much -89 - bottom 90 $|\alpha\rangle$

r lof I

Danth (am)	GRAPHIC LOG	
Deptn (cm)		PROJECT: NGSP
	0-16 cm = 5/41	CORE ID: 6
	V. Soft, soupy, V. SI. gritty	DATE COLLECTED: $10/7/2008$
	mud fer small roots	INITIAL LENGTH:(cm)
5441	, 1000 2 . 200	COMPACTION:(cm)
10		FINAL LENGTH:(cm)
	1111000 = 5Y3/2	DATE OPENED: 10/8/2008
	16-97 cm2-1-1	ł t
- A	- 10 cm - Centre in	NOTES
-74	La Cinz al Aime	NO1E5.
	moa. soft - st. IIM	
•	(Homer w oupin 10 44cm)
- 5Y3/2	less capy; still sl. gritty	
	Clause much roots (Feer)	
30	Charley Millar, 10013 Games	
	v la voots	Sampled Grain Interval Size
t.m		
40		44-48
<u> </u>	-44 44-48 5Y 3/2 , 1	48-62
543/2	organic layer teels 1	1 le course 62-74
	- 40 saudust; some	74-84
50 - 1	40-60- St. firm aveding t	o
Cuz-	<u>4300</u> x (10	actta.
5 1 51 72	moa firm le buan, si y	Jri ng
	Clayey mud	
	~ 60 - some organics	
10R 41-	2 60-2 10 R 4/2 - Smooth day	
A		any characterized
	62-14- Organic loyer n	nod. multide med. sand: lower
INYR AL-	@72 cm = pine cone	H.Ocontend
70	lots of sticks piece of b	out : @ mod. firm
54,3/2	leaves 1 66 cm	
	74 bank	
10R 4/2	2 74-84 cm: reddish, V.H	irm Ciby
en w a	I have reache throught -	Invoe one @ 78 cm - no
5VR4	1A OFS OF VOLES (NVOUU)	roots
	B4-bottom	
00-		
		"Wyscate and a second sec
		· · · · · · · · · · · · · · · · · · ·

Plof **GRAPHIC LOG** Depth (cm) PROJECT: NGSP (\mathcal{O}) 0-12 cm: sl. gritty, sopy CORE ID: DATE COLLECTED: 10/8/2008 mud; Firmer if depth to 5Y 3/2 INITIAL LENGTH: (cm)12 cm COMPACTION: (cm)FINAL LENGTH: 10-(cm)DATE OPENED: 10/8/2008 12cm 12-24cm: sl. firm w/ slight 1 infimmess w/ depth to 24cm, NOTES: cut core too low-10 YR 3/2 add at least 30m to 20 sl. gritty mud; sl. organises. length throughout roots, leaves bits 24 CM gassy to ~ 40 cm 24-40am : mod. Firm, 51. gritty clayey mud - more 30 10 YR 4/2 Sampled Grain cohesive than 12-24 cm section; Interval Size smallwood drips/(saudust) churks 0-12 12-40 40cm 40 40-44 } org.loyer; bark ~2"wide-5Y 3/2 44-51 44 cm) both sides of core, roots; small pieces of wood; mod. gritty, V. soupy woud around 51-68 5YR 5/2 wood 50 51 cm 44-51 cm : v. firm, sl. gritty clay; root structs; big stick some org. 10YR5/2 Qthroughout .68-bottom 70-51-68 cm : starts out V. Firm to mod. Firm@ depth. more Content near bottom 80 (due to loss of bottom during collection? 51. gritty Clay; org. throughoud -boot struct's bits of leaves - asp. neor top of section -Lewer @ à little sondier @ depth (bst depth 5-6 cm)

Plof **GRAPHIC LOG** Depth (cm) NGSP PROJECT: \mathcal{O} 0-15- sl. gritty, sorpy mud-CORE ID: 7A DATE COLLECTED: 10/8/08 firmer, less soupy w/ depth to 5Y 2/1 INITIAL LENGTH (cm) 15 cm; green SAV at surface, Some root struct; V. Soft COMPACTION: (cm) 10 10 - color change FINAL LENGTH: (cm) to mod. 18/08 DATE OPENED: 10/ Soft @ 15 cm 10YR 3/2 15 15-42 cm! Very firm; NOTES: very soupy at the top; nuissing in like separation 19/20 layer @ 19 = stickor big Chunk 20. Piece of wood . V. Sl. gritty Looks made during retrieval muddy day gossy to 42000 10.YR - 29 cm - piece 4/2 of bark/wood 30 Sampled Grain Interval Size 30-42 cm - few org. Monghout 0-15 15-42 40 42-48 42 48-57 +) tree trunk or branch single 10YR4Z 86-945 v. sl. gritty mud; may be organics') higher H2O content 48 50 48-57 cm ! very firm, sl. gritty 104 R5/2 ž 86-94.5 Clay 57 @ 56= intense 60. root layer = above pt. of Separation Core separation during 70retrieval emf 80 86 few voots throughout this section 90 10 VR 5/2 5441 ω istions 94.5 "bottom

Ploft

GRAPHIC LOG Depth (cm) PROJECT: NGSP 0-9am : V.Sl. gritty, V. Soft Ô CORE ID: sorpy mud; gassy DATE COLLECTED: 10/8/08 5Y2/1 INITIAL LENGTH: (cm)COMPACTION: (cm)9<u>9-16cm</u>: V.Soft→ Sl. Soft, FINAL LENGTH: 10 (cm)sl. gritty; sul woody pieces-DATE OPENED: 10/9/08 543/1 . sticks, sml. pieces of bart throughout ; gassy NOTES: 16-34 cm : mod firm > V 20 -Firm @ 34 cm; less gassy w/ 5Y 3/2 depth; v. sl. gritty muddy clay, few sml org. Harvout - leaves, sml. pieces of wood 30 Sampled Grain Interval Size 34, mod. 0-16 { . Firm, v. sl. gritty muddy clay 10 YR 4/2 38) few orgs. throat - like above but diff. color 16-44 40 44- 56 10YR5/2 56-81 mod. Firm >> 38-44 cm v. firm of depth @ 44 81-83 44 cm; sondier than above; 83-92 mod. sondy clayey mud; fac orgs. 50 -10YR 6/2 92-100 throughout 44-56: V. Firm, sl. muddy send 56 few orgs throat - wood chips, 60 leaf matter; 56-74: mod firm, mod muddy 10 YR 5/2 sand; sticks throughout; more orgs. than obore 70 -74 74-81: mod. firm; wood shavings Stick @ 76 cm; some gr. size as 10 YR 4/2 leaves & pieces of stick 56-74; dk pièces of org. matter-80 817 835 sandwat?; watery (just in wood?) stick = don't think its sandwat 67 88 B1:90: Some grain Size & wood Armness as 74-81 10 YR 4/2+ 6/2 90 00 darken than 81-83 wood 87-88: loyer of woody pieces 92 Į. 87-88 90-92 : mother woody layer; 10YRA/2 92-100-V. firm, sl. muddy sand 100=bottom 100

PLOFI

GRAPHIC LOG Depth (cm) PROJECT: NGSP Ô. 0-12: V. sl. gritty, Msoft, CORE ID: DATE COLLECTED: 10/8/08 saupy mud, gassy INITIAL LENGTH: 5Y2/1 (cm)COMPACTION: (cm) lo FINAL LENGTH: (cm)12-16 cm (to 21 cm) -12 DATE OPENED: 10/9/08 roots @ 12 cm; sml sticks & leat 543/2 debris throughout; v sl. gritty mud -16 NOTES: locks like we hit bottom. 12-16 cm: V. soft 10 YR 3/2gassy to 57 am 20-16-19: mod. Soft WOOD NOYR42 19 21 19-21: SI. Soft , wood chunk 21-57 sl. soft, sl.gritty mud from ~ 55-57 an 1 in sound content 30 no obvious orgs. (sticks/leaves-No) Sampled Grain Interval Size 10 YR4/2 0-21 21-59 40 -59-69 69-81 81-97 50 -57 {mod. firm, mod. muddy soud u/ 59) organics; sml pieces of wood, leaf debis, root struct. yorg 60 59-69 an: v. Firm, Sl. muddy sand w/ brg. debris throughout less concentrated than 57-59 cm - little pieces of wood 10 YR5/2 69 major text. + color change 70predom. 69- bottom- very firm, med to fine sand, V. SI. muddy 10 R 4/2 W/ rocks throughout 545/6; 10R5/4 @ 82 cm - stick 10YR 8/2; 10 R 2/2 80mottles -81 cm predom. 10 YR 3/2 w/ 10 YR 8/2, 56512, 30⁻ 5YS/6, 10 R 4/2 mottles 97 = bottom 100

PlofI

GRAPHIC LOG Depth (cm) PROJECT: NGSP 0-17: V. soft, Walery, V.Y. SI. DATE COLLECTED: 10/8/08 gritty, Soupymud; few roots, INITIAL LENGTH:_ leaf debris throughout COMPACTION:____ (cm)(cm)542/1 FINAL LENGTH: (cm) DATE OPENED: 10/9/08 -17-NOTES: lots of drippsge 17-46: mod. soft -> sl. during core cu. 20 to bottom mudde soft@46 cm; What we've seen till now from ~ 20 cm - 46 = lots of Larger of Asampled Pieur 2 Intervet gassy to 46 cm. organics - may be sawdust pervasive throughout layer; 30· 10YR3/2 Grain v. sl.gritty mud; still fairly Sřze Watery/soupy 0-17 17-46 46 - 5240. 52-69 69-81 46 y mod. firm, sl.gritty clay; bbok (N2) organic? matter 544/1 (leaf bits?); root struct. ~ 46 cm & throughout 50 W/ NZ 52 52-69: mod. firm, v. sl. gritty cla V. cohesire /dense/heavy; tiniest bit of grit; small roots throughour 60 575/2w/ 5Y516 Streaks J 69 70 69-81: mod. firm, v. sl. gritty day (some as 52-69cm); dense also, like above ""; v. few roots throughout 5Y 4/2 80 -81 bottom 90

P.1of2

	<i>.</i>	GRAPHIC LOG				
Depth	(cm)		PROJECT	Γ:	NGSF	2
0	1		CORE ID):	ii	
		0-13: V. Sl. gritty, Soufer moor,	DATE CO	DLLECTED:	10/8/0	28
	V. soft; some roots throughout INITIAI			LENGTH:		(cm)
	5Y 4/1		COMPAC	CTION.		(cm)
10			FINALL	FNGTH		(0m)
			DATE OF	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	19/00	(CIII)
	V	-13	DITLU		10100	
	-	13-26: V. soft > sl. firm;		· 4		a.
		si arith mud; lots of sml	NOTES:	channels	somple (Or MPE
20	10YR3/2	word churks & stathrood & roots	on 12	; other	1/2 for M	<u>65</u>
			Subs	miples; q	<u>2554 40</u>	<u>33 cm</u>
					·	
	101/02/0	-26) SI. firm, Lots of ovgs.; saudust-				
	10 YK 3/2 g	512 ed chunts of wood & bark				
<u>30</u>		(few roots; sligrity mud	·	Sampled	Grain	
	2 Y 4/1 0	-33)		Interval	Size	
	\uparrow	33-57; el Gran aville m	and	6-26		
		C. J. Wing gring to	~ Mrn-	26-23		
40)	tew sml woody places	stick	33-51		
	a	-42) lq.		57-11		
	10YR 4/2	{ branch		27-16		
- (· · · · · · · · · · · · · · · · · · ·		-46 M1.5" diam.		116-149		
and the second s	4	20114		149-172		
5ບ						
					·	
	V	-57 57-16: V. Firm; Colo	13			
60	and ma		har			•
00	preasing	Similor, except predominance c	nonges,	······································		
	10 YR 6/2	fairly clayey's cohesive/dense	; tew			
	inter Vort.	orgs. at all little to no go	5			
	W101R514				,	
70-	Anna	-70				
	0			······································		
	predom					
	10 YR 5/4					
	W/ IOYR6/2					
80	mottles					
·		-85				
1	avadam					
	Meconi		n viji i s	······································		
00	10 YR 6/2w/					
	IOYR 54					
	14		ļ	·····		
	mottles/strak	5				
00	- "		ſ		[]	and the second second

					ρ	2 of Z
Depth	(cm)	GRAPHIC LOG				
100	· · · · · · · · · · · · · · · · · · ·		PROJECT:	<u> </u>	<u>65P</u>	
			CORE ID:	<u> </u>		01-0
-			DATE COL	LECTED: _	10/	8/08
	50me 30		INITIAL L	ENGIH:	·······	(cm)
100	85		COMPACT	10N:		(cm)
10			FINAL LE	NGIH:	lala	(cm)
. •			DATE OPE	NED: <u>10</u>	1970	8
		-116				
	mir of		NOTES:	channel :	somp	le for MDE
20		116-149 cm : still v. firm	<u>on 12:</u>	other 72	for p	<u>165 506</u> -
4	10 YR 6/2	v. muddy sand - much	sample	<u>`</u>		
		Sondier than layer above. r	x throad	t-red ss	aven	55
	10 YR 5/2) <u>0</u> t	<u> </u>
130		@ IIt con- smi nk.				
100	10 YR 4/2	@ 139 cm - some orgs - root?		Sampled	Grain	 .
		142 " " "		Intervar	Size	sec
	in rtairly	@ 147-149 - imagentuation of				Y.
1.6-	dustinct					
140	1. Durner	@ 135-149 - sand lens-much	~ -			
	renseg	more \$and = sl, muddy mu	od-			
		Coduse sound				
150-		- 149				
	predom.	(49-17); sulchness throat	,			
_	IOR 4/	- COULE SMISIONES INFOCUL				
	12 01	V.V. Hrmi, stightly middly	nea.			
160-	5Y5/1	Sand.				
00	- 1 516	@165-sml niere of stk				
		Not in a stability was of on				
		mor much easy in way of or	Jz. –		;	
170		<u> </u>			-	
		bottom				
(80					+	
100						
			ļ			
					ļ	, T
				······································		
					T	and the second

P1 of 2

p2.0+2.

T. I UI a **GRAPHIC LOG** Depth (cm) NGSP PROJECT: 0 0-13 an : V. Sl. gritty, soupy 13 CORE ID: DATE COLLECTED: 10(9/08 mud ; V. soft INITIAL LENGTH: (cm)10-13 cm - some root strut, 543/2 COMPACTION: (cm)sml stx, woodchips 10-FINAL LENGTH: (cm)DATE OPENED: 10/9/08 43 13-22 cm: V. Soft-> mad. Soft @ 22am, skinny Worm @ 18cm; v.sl. 5Y2/1 NOTES: gassy to ~ 40 cm 22 throat 13-22 an 20. 22-40 cm: mod. soft thru out; sl. gritty mud 10YR 4/2009 30-@ 28-30 - organic layeny V. big Sampled Grain chunk-o-wood & wood chips & root struct. /few rorgs. From 30-40 Interval Size 0-22 22-40 40 40-56 40-40-56 an - mad. firm, V.Sl. 56- 108 BI 102 102-109.5 gritty clay; v. dense; very Ew orgs. (pieces of root) 10 YR 5/2 567 mod. firm > v. firm; sl. muddy med. sand; no orgs. apparent 60-104R6/2 63-68 - V. Firm 10YR 5/2 68-80 - mod. firm 70-80. bottom - V. Firm] 104R6/2 63-95: 51. muddy med sand 95-102: gradually coarsening 10 YR 5/4 sond 102 - 109.5 - 51. muddy coarse streaks sand රී 40 102 cm -@96: N2-orgs-piece of wood NO ROCKS (∞)

P.2. 0f 2.

PROJECT: NG	SP
CORE ID:	13
DATE COLLECTED:	10/9/08
INITIAL LENGTH:	(cm)
COMPACTION:	(cm)
FINAL LENGTH:	(cm)
DATE OPENED:	10/9/08

NOTES:

Sampled Interval Grain Size e.

T. I. Ma

GRAPHIC LOG Depth (cm) NGSP PROJECT: 0-22: V. Sl. gritty Mud; V. Soft, Watery; orgs thru-out, - sml lest debris, root CORE ID: DATE COLLECTED: 10/9/08 543/2 INITIAL LENGTH: (cm)structure COMPACTION: (cm)FINAL LENGTH: 10 (cm)12 cm DATE OPENED: 10/9/08 5Y2/1 NOTES: 20 ZZan 22-32 cm : mod soft to st. firm; v. st.gritty muddy 10 YR 4/2 Clay; 22-26 an- intense org. layer-leaf debris; sul Sampled Grain wood of 30 wood chips 32 an Interval Size bank, stx 0-22 32-70 mod. finn 70-104 V. Firm 22-104 10YR42 104-129 40-32-104- V.Sl. gritty clay @ 39-1ittle stick-no other 129-145 +48 cm - color change obvious orgs, 50 60 5Y 5/2 70 80cm 80 54 5/2 ω SŌ 10 YR 5/4 00

P.2 0+2

P.1 of 4 **GRAPHIC LOG** Depth (cm) NGSP PROJECT: O 0-18 am V. sl. gritty, Soupy CORE ID: 5 mud; V. soft to mad. soft DATE COLLECTED: 10/9/08 INITIAL LENGTH: (cm)@ 18 cm, roots; bits of COMPACTION: (cm)542/1 5tx 10 -FINAL LENGTH: (cm)DATE OPENED: 10/9/08 channel sample from 18 cm some g.s. as 0-18 anNOTES: 0-100 cm 20 -24 cm 24-34: sl. firm, sl.gritty 10 YR32 clayish; root struct, throut, 30-Sampled Grain esp: around outside of core Interval Size 34 CM Ø 34-75cm - V. Firm except -100 40-00. 107 @ 46 cm (soft spot); V.Sl. 07-126 gritty day; some root struct. throat few only 26-1424 42-145 50-10 YR 5/2 0-100 nn 60 -70 75cm 75-100 cm V. firm, SI gritty 80clay w/ spots of heavy orgs .; 10YR 3/2 (soudust bits (?) 082-88 cm); W/ N2 90 92-100an - 1 in soudiness 120 100 CM

P.202

Plof1

GRAPHIC LOG Depth (cm) NGSP PROJECT: 0-0-13 cm i med. sand w/ CORE ID: SOSml pelobles & 1x throut Vá-2" diam. DATE COLLECTED: 10/9/08 5YR 3/4 INITIAL LENGTH: (cm)COMPACTION: (cm) 10 -FINAL LENGTH: (cm)13 cm DATE OPENED: 10(9/0)13-43 cm - med-coarse NOTES: SOIL sample from sand; same size nxdownstream. 54R5/6 20-1/4-2" diam. bank, ~ 150 m from dam 50 Sampled Grain Interval Size 36 cm - lens of 10 YR 7/4 0-12 -43 40 43 cm - bottom 54R6/6 50

Appendix C

Core Stratigraphy

			Organic	End of Organic	Coarse	Soil		-	-
Core	Length	Firm Mud	Layer	Layer	Material	Horizon	Easting	Northing	WaterDepth
		Depth-	Depth-			Depth-			
Label	Meters	Meters	Meters	Depth-Meters	Depth-Meters	Meters	MetersUTM	NAD83	Meters
1	1.04	0.28	0.45	0.57	0.86	NO	661132	4388726	2.09
2	1.24	0.29	0.45	0.50	0.92	1.08	661127	4388734	2.01
3	1.55	0.12	0.55	0.71	0.93	1.12	661143	4388716	2.13
4	0.83	0.12	NO	NO	0.67	0.73	661173	4388794	1.49
5	0.89	0.30	0.62	0.68	0.76	NO	661153	4388800	2.04
6	0.84	0.16	0.44	0.48	0.72	0.74	661138	4388810	1.65
7	0.68	0.12	0.40	0.44	0.63	NO	661189	4388881	1.16
7A	0.67	0.15	0.42	0.48	0.56	NO	661190	4388882	1.22
8	1.00	0.16	0.56	0.92	0.92	NO	661200	4388876	1.55
9	0.97	0.21	0.57	0.59	0.59	0.69	661216	4388870	1.55
10	0.81	0.17	0.46	0.52	NO	NO	661249	4389044	0.76
11	1.72	0.13	0.26	0.33	1.16	1.49	661268	4389030	0.85
12	1.31	0.10	0.41	0.46	0.62	NO	661279	4389026	0.76
13	1.10	0.13	0.28	0.30	0.56	NO	661335	4389149	0.34
14	1.45	0.21	0.23	0.26	1.04	1.42	661351	4389139	0.43
15	1.45	0.18	0.18	0.24	1.00	1.07	661366	4389124	0.46
16	0.43	NO	NO	NO	NO	0.00	661110	4388545	0.00

Table C-1. Observed data recording the depth in the collected cores to the identified facies. Identification of the facies was performed through a comparison and analysis of core logs, photographs, physical properties, and elemental properties of the collected cores. NO means that the facies was not observed.

Identification of Selected Facies in Collected Cores New Germany State Park--October 2008

Figure C-1. Graph identifying selected facies versus depth in the collected cores. Depth is total sediment depth regardless of water depth at the collection location. Core locations are identified in Figure A-1. The cores are bracketed in their transects which are ordered from downstream to upstream.

Identification of Selected Facies in Collected Cores New Germany State Park--October 2008

Figure C-2. Graph identifying selected facies versus depth in the collected cores. Depth is meters from lake surface.

Appendix D

Pesticide Analysis

Send Report To:	DHMH	State of Maryland Laboratories Administration of Environmental Chemistry		Lab No. Date Received	
410-554-55	Y TRACE 201 W. Presto 201 W. Presto	TRACE ORGANICS SECTION 201 W. Preston Street, Baltimore, Maryland 21201			
portfedor.	state md. US	. DeBoy, Dr. P.H., Director		Do not write above this line	
	LABORATOF	RY ANALYSIS REQUE	ST		
Bottle No: NGSP	Core 1 Plant / Site Name	: NGSP	County:	GARRETT	
Sample Source:	Street	Town or City	Location:	AKE Sediment III (well no., lab sink, sample tap, etc.)	
Sampler ID:		PWSID:		Plant ID:	
Collector:	chand Orth	110 -554 -554 / (include telephone number)			
Date Collected: 7	<u>/OCT</u> /200%7	Time Collected: 10	a.m p.m	•	
Field Preserved:	Yes V No Preservative	Used: 🗆 1:1 HCI+Asco	rbic acid 🗆 Na	$_2$ So ₄ \square 6 mg NH ₄ CI	
Sample Type:	 Drinking Water Community Non-Community Sed Private 	dfill Given Source (Raw Distribution Water Treatr	Water) (Treated) nent Plant POE	□ Liquid □ Solid 凌 Other <u>8270</u>	
Specify Program:	SDWA NPDES	CWA CRCRA	Consumer Pro	ducts 🗴 Other	
Test Requested :	□ Trihalomethanes	🗆 Volatiles 🕅 🕅	Semi-volatiles	□ Haloacetic Acids	
FIELD DATA:		Field Blank Bottle No.:			
	pH Free CI Total CI	Trip Blank Bottle No.:			
	and manual and				
Remarks: <u>'Pest</u>	cides				
Laboratory Super	visor: Ladia Men	Reha Da	ite Reported:	19 108	
Form Revised 12/05 DHMH 4362	•Phone: (410) 767-	4388 •Fax: (4	10) 225-9318		

State of Maryland Department of Health and Mental Hygiene Division of Environmental Chemistry

TRACE ORGANICS SECTION

201 W. Preston Street, Baltimore, MD 21201 John M. Deboy, Dr. P.H., Director

Certificate of Analysis - Semivolatiles

Method:	3540/8270
Date Analyzed:	11/07/08
Sample Name:	990822

Contaminants	DL*	Results
Alpha BHC	333	ND
Beta BHC	333	ND
Gamma BHC (Lindane)	333	ND
Heptachlor	333	ND
Delta BHC	333	ND
Aldrin	333	ND
Heptachlor Epoxide	333	ND
Endosulfan I	333	ND
4,4' - DDE	333	ND
Dieldrin	333	ND
4,4' - DDD	333	ND
Endosulfan II	333	ND
Endrin Aldehyde	333	ND
Endosulfan Sulfate	333	ND
4,4' - DDT	333	ND
Methoxychlor	333	ND
Endrin Ketone	333	ND

*All results are in parts per billion ND = Less than detection limit e = estimated value

Aadie Mu Section Chief: era

19/08 Date Approved:

Phone: (410)-767-5582

Fax: (410) 225-9318

Send Report To:	State of Maryland DHMH - Laboratories Administration	Lab No. Date Received
410-554-5541	Division of Environmental Chemistry TRACE ORGANICS SECTION 201 W. Preston Street, Baltimore, Maryland 21201	990828 cor co a
iortt-@dnr.state.md.us	John M. DeBoy, Dr. P.H., Director	Do not write above this line
LABC	DRATORY ANALYSIS REQUEST	
Bottle No: NGSP // Plant / Si	ite Name: <u>NG5P</u> Count	y: GARRET
Sample Source: <u>2300 54. Rul</u>	St. Baltimore MD 21218 Location:	(well no., lab sink, sample tap, etc.)
Sampler ID:	PWSID:	Plant ID:
Collector: Richard Orth	410-554-5541 (include telephone number)	
Date Collected: <u>지 / 이 기</u> 200 월	Time Collected: <u>/</u> _a.m p.	m.
Field Preserved: □ Yes ☑ No Prese	ervative Used: 🗆 1:1 HCI+Ascorbic acid 🗆 N	$Na_2So_4 \square 6 mg NH_4CI$
Sample Type: Drinking Water Community Non-Community Private	 Landfill Source (Raw Water) Stream Distribution (Treated) Sediment Water Treatment Plant POE 	$\Box Liquid \Box Solid 5270 Tother 5270$
Specify Program: □ SDWA □ N	PDES 🗆 CWA 🗆 RCRA 🗆 Consumer Pr	roducts and Other
Test Requested : □ Trihalomethanes	Semi-volatiles	□ Haloacetic Acids
FIELD DATA:	– Field Blank Bottle No.:	
	Trip Blank Bottle No.:	
Remarks: Pesticides		
Laboratory Supervisor: Jade	à Museem Date Reported:	1/9/02
Form Revised 12/05	•Fax: (410) 225-9318	
DHMH 4362		~
	SUBMITTOR'S COPY	

SU	B	MI'	m	0	R'	S	С	0	P'	Y
----	---	-----	---	---	----	---	---	---	----	---

State of Maryland Department of Health and Mental Hygiene Division of Environmental Chemistry

TRACE ORGANICS SECTION

201 W. Preston Street, Baltimore, MD 21201 John M. Deboy, Dr. P.H., Director

Certificate of Analysis - Semivolatiles

Method:	3540/8270	
Date Analyzed:	11/07/08	
Sample Name:	990823	
Contaminants	<u>DL*</u>	<u>Results</u>
Alpha BHC	333	ND
Beta BHC	333	ND
Gamma BHC (Lindane)	333	ND
Heptachlor	333	ND
Delta BHC	333	ND
Aldrin	333	ND
Heptachlor Epoxide	333	ND
Endosulfan I	333	ND
4,4' - DDE	333	ND
Dieldrin	333	ND
4,4' - DDD	333	ND
Endosulfan II	333	ND
Endrin Aldehyde	333	ND
Endosulfan Sulfate	333	ND
4,4' - DDT	333	ND
Methoxychlor	333	ND
Endrin Ketone	333	ND
		*

*All results are in parts per billion ND = Less than detection limit e = estimated value

Sadra' Klein eer Section Chief:

8/00 Date Approved:

Phone: (410)-767-5582

Fax: (410) 225-9318

Send Report To:State of MarylandLab No. Date ReceivedRichard OrthDHMH - Laboratories AdministrationDivision of Environmental Chemistry99082400130410-5554-5541201 W. Preston Street, Baltimore, Maryland 2120199082400130John M. DeBoy, Dr. P.H., DirectorDo not write above this line
LABORATORY ANALYSIS REQUEST
Bottle No: <u>MGSP15</u> Plant / Site Name: <u>MGSP</u> County: <u>Garnet</u> Sample Source: <u>2300</u> St. Paul Street Battinger M ²¹²¹⁸ Location: <u>Lake Sediment</u> # 15
Sampler ID: PWSID: PWSID: Plant ID:
Collector: R. cha. J. Orth. 410-554-5541 (include telephone number)
Date Collected: 1007/200 8 Time Collected: 16 a.m. p.m.
Field Preserved: Yes 1 No Preservative Used: 1:1 HCI+Ascorbic acid Na,So, 6 mg NH,CI
Sample Type: Drinking Water Landfill Source (Raw Water) Liquid Community Stream Distribution (Treated) Solid Non-Community Sediment Water Treatment Plant POE Other 8270 Private Private Other 8270
Specify Program: SDWA NPDES CWA RCRA Consumer Products Other
Test Requested : Trihalomethanes Volatiles K Semi-volatiles Haloacetic Acids
FIELD DATA:
pH Free CI Total CI Trip Blank Bottle No.:
Remarks: Pesticides
Laboratory Supervisor: Sadia Muneem Date Reported? 1905
•Phone: (410) 767-4388 •Fax: (410) 225-9318 № •Fax: (410) 225-9318 0НМН 4362 1

SUBMITTOR'S COPY

State of Maryland Department of Health and Mental Hygiene Division of Environmental Chemistry **TRACE ORGANICS SECTION** 201 W. Preston Street, Baltimore, MD 21201

John M. Deboy, Dr. P.H., Director

Certificate of Analysis - Semivolatiles

Method:	3540/8270
Date Analyzed:	11/07/08
Sample Name:	990824

Contaminants	DL*	Results
Alpha BHC	333	ND
Beta BHC	333	ND
Gamma BHC (Lindane)	333	ND
Heptachlor	333	ND
Delta BHC	333	· ND
Aldrin	333	ND
Heptachlor Epoxide	333	ND
Endosulfan I	333	ND
4,4' - DDE	333	ND
Dieldrin	333	ND
4,4' - DDD	333	ND
Endosulfan II	333	ND
Endrin Aldehyde	333	ND
Endosulfan Sulfate	333	ND
4,4' - DDT	333	ND
Methoxychlor	333	ND
Endrin Ketone	333	ND

*All results are in parts per billion ND = Less than detection limit e = estimated value

Section Chief:

ladea" Uneen

Date Approved:

11/09/08

Phone: (410)-767-5582

Fax: (410) 225-9318

Appendix E

EPA 8270 Semi-Volatile Analysis

Note: The following results are from samples which were analyzed beyond the accepted holding times established in the EPA 8270 protocol.

Seme report To: <u>Richard Orth</u> <u>2300 St. Paul Snew</u> Baltinon, MD 21218	Stat DHMH - Lab Division of E TRACE OR 201 W. Preston Stre John M. Del LABORATORY	e of Maryland oratories Administratic inviromental Chemistr GANICS SECTI et, Baltimore, Maryland Boy, Dr. P.H., Director ANALYSIS R	on y ON 21201 EQUEST	Lab No. Date Received
Bottle No: NGSP / 5 Pl	ant / Site Name: _	NGSP	Co	unty: <u>GARRETT</u>
Sample Source: 2300 54.	Pad Street	<u>Callings M</u> Town or City	N21218 Locati	on: Loke Section #15 (well no., lab sink, sample tap, etc.)
Sampler ID:] PW	/SID:] Plant ID:
Collector: Richard Ort	<u>t 410</u>	<u>-554-55</u> clude telephone number)	41	
Date Collected://200	E Tim	e Collected: 🖂	/◯_a.m	_ p.m.
Field Preserved: 🗆 Yes 🗷 No	Preservative Use	d: 🗆 1:1 HCI	+Ascorbic acid	\Box Na ₂ So ₄ \Box 6 mg NH ₄ CI
Sample Type: Drinking V Communit Non-Comm Private	Vater □ Landfil y □ Stream nunity ⊼ Sedime	l □ Source □ Distril nt □ Water	e (Raw Water) pution (Treated) Treatment Plant	□ Liquid □ Solid POE 📈 Other <u>8270</u>
Specify Program:	□ NPDES □ C	WA 🗆 RCI	RA 🗆 Consum	er Products J Other
Test Requested :	ethanes 🗆	Volatiles	K Semi-vola	tiles 🗆 Haloacetic Acids
FIELD DATA:	Fie	ld Blank Bottle	e No.:	
pH Free CI	Total CI Tri	p Blank Bottle	No.:	
Remarks: <u>ANALYZE</u> FOR	FULL EPA	8270 3	Sent Volatile	ра Б.
Laboratory Supervisor:	erali pulla	Just	Date Report	ed: 12 131 108
Form Revised 12/05 DHMH 4362	•Phone: (410) 767-4388		•Fax: (410) 225-9318	

State of Maryland

Department of Health and Mental Hygiene Division of Environmental Chemistry

TRACE ORGANICS SECTION

201 W. Preston Street, Baltimore, MD 21201

John M. Deboy, Dr. P.H., Director

Certificate of Analysis - Semivolatiles

Method	3540/8270
Date Analyzed:	12/24/08
Sample Name:	991065

Contaminants	$\underline{\mathbf{DL}}$	Results	Contaminants	DL	Result
Phenol	333	ND	4-Nitrrophenol	333	ND
Bis(2-Chloroethyl)ether	333	ND	2,4-Dinitrotoluene	333	ND
2-Chlorophenol	333	ND	2,3,4,6-Tetrachlorophenol	333	ND
1,3-Dichlorobenzene	333	ND	Fluorene	333	ND
1,4-Dichlorobenzene	333	ND	Diethylphthalate	333	ND
1,2-Dichlorobenzene	333	ND	4-Chlorophenyl phenyl ether	333	ND
Bis(2-Chloroisopropyl)ether	333	ND	4,6 -Dinitro-2-methylphenol	333	ND
2-Methyl phenol	333	ND	Diphenylamine	333	ND
Hexachloroethane	333	ND	4-Bromophenyl phenyl ether	333	ND
3&4-Methyl Phenol	333	ND	1,3,5-Trinitrobenzene	333	ND
Nitrobenzene	333	ND	Phenacetin	333	ND
Isophorone	333	ND	Hexachlorobenzene	333	ND
2-Nitrophenol	333	ND	Pentachlorophenol	333	ND
2,4-Dimethylphenol	333	ND	Pentachloronitrobenzene	333	ND
Bis(2-Chloroethoxy)methane	333	ND	Phenantherene	333	ND
2,4-Dichlorophenol	333	ND	Anthracene	333	ND
1,2,4-Trichlorobenzene	333	ND	2,4,6-Sec-butyl-Dinitrophenol	333	ND
Naphthalene	333	ND	Di-n-Butylphthalate	333	ND
2,6-Dichlorophenol	333	ND	4-Nitroquinoline-N-oxide	333	ND
Hexachloropropylene	333	ND	Methapyrilene	333	ND
Hexachlorobutadiene	333	ND	Fluoranthene	333	ND
4-Chloro-3-Methylphenol	333	ND	Pyrene	333	ND
1,2,4,5-Tetrachlorobenzene	333	ND	Di-methylaminoazobenzene	333	ND
hexachlorocyclopentadiene	333	ND	Butyl benzyl phthalate	333	ND
2,4,6-Trichlorophenol	333	ND	Benz(a)Anthracene	333	ND
2,4,5-Trichlorophenol	333	ND	Chrysene	333	ND
2-Chloronaphthalene	333	ND	Bis(2-Ethylhexyl)phthalate	333	ND
1,4-Naphthoquinone	333	ND	Di-n-octyl phthalate	333	ND
Acenaphthylene	333	ND	7,12-Dimethylbenz(a)anthracene	333	ND
Dimethylphthalate	333	ND	Benzo(b)fluoranthene	333	ND
2,6-Dinitrotoluene	333	ND	Benzo(k)fluoranthene	333	ND
Acenaphthene	333	ND	Benzo(a)pyerene	333	ND
2,4-Dinitrophenol	333	ND	Indeno(1,2,3-cd) pyrene	333	ND
Pentachlorobenzene	333	ND	Di benz(a,h)anthracene	333	ND
			Benzo(g,h,i)pervlene	333	ND

*All results are in parts per billion ND = Less than detection limit

e = estimated value

Section Chief: <u>A</u>LL ork M

Date Approved:

Fax: (410) 225-9318

2/31/08

Phone: (410)-767-5582

Send Report To: <u>Richars</u> <u>2300 St. Pa</u> R. H.	State of Maryland DHMH - Laboratories Administration Division of Enviromental Chemistry TRACE ORGANICS SECTION 201 W. Preston Street, Baltimore, Maryland 212 John M. DeBoy, Dr. P.H., Director	Lab No. Date Received $(a \circ b \circ c \circ c$
Kallman, F	LABORATORY ANALYSIS REC	Do Dot write above this fine 10 0
Bottle No: NGS	Plant / Site Name: NG5P	County: GARRETT
Sample Source:	2300 St. Paul Strut Battimore, M Street Town or City	D2418 Location: Lake Sediriet #11 (well no., lab sink, sample tap. etc.)
Sampler ID:		Plant ID:
Collector: Rich	6.06 + 410-554-554 (include telephone number)	
Date Collected: _	<u>ষ / ০ল7200 % Time Collected: // ৫</u>	≥a.mp.m.
Field Preserved:	□ Yes 🛒 No Preservative Used: 🗆 1:1 HCI+A	Ascorbic acid \Box Na ₂ So ₄ \Box 6 mg NH ₄ Cl
Sample Type:	 Drinking Water Landfill Source (Community Stream Distribut Non-Community Sediment Water Tr Private 	Raw Water)□Liquidion (Treated)□Solideatment Plant POE∠Other 8270
Specify Program:	□ SDWA □ NPDES □ CWA □ RCRA	Consumer Products Ø Other
Test Requested :	\Box Trihalomethanes \Box Volatiles	Semi-volatiles 🗆 Haloacetic Acids
FIELD DATA: _	pH Free CI Total CI Trip Blank Bottle N	No.:
Remarks: <u>Ana</u>	LYZE FOR FULL EPA 8270 S	en - volatties
Laboratory Supe	rvisor: Deheral Miller Juin	Date Reported: 12 131 108
	•Phone: (410) 767-4388 •F	ax: (410) 225-9318

Form Revised 12/05 DHMH 4362 State of Maryland Department of Health and Mental Hygiene

Division of Environmental Chemistry

TRACE ORGANICS SECTION

201 W. Preston Street, Baltimore, MD 21201 John M. Deboy, Dr. P.H., Director

Certificate of Analysis - Semivolatiles

Method:	3510/8270
Date Analyzed:	12/25/08
Sample Name:	991066

<u>Contaminants</u>	$\underline{\mathbf{DL}^{*}}$	<u>Results</u>	<u>Contaminants</u>	$\underline{\mathbf{DL}}$	<u>Result</u>
Phenol	333	ND	4-Nitrrophenol	333	ND
Bis(2-Chloroethyl)ether	333	ND	2,4-Dinitrotoluene	333	ND
2-Chlorophenol	333	ND	2,3,4,6-Tetrachlorophenol	333	ND
1,3-Dichlorobenzene	333	ND	Fluorene	333	. ND
1,4-Dichlorobenzene	333	ND	Diethylphthalate	333	ND
1,2-Dichlorobenzene	333	ND	4-Chlorophenyl phenyl ether	333	ND
Bis(2-Chloroisopropyl)ether	333	ND	4,6 -Dinitro-2-methylphenol	333	ND
2-Methyl phenol	333	ND	Diphenylamine	333	ND
Hexachloroethane	333	ND	4-Bromophenyl phenyl ether	333	ND
3&4-Methyl Phenol	333	ND	1,3,5-Trinitrobenzene	333	ND
Nitrobenzene	333	ND	Phenacetin	333	ND
Isophorone	333	ND	Hexachlorobenzene	· 333	ND
2-Nitrophenol	333	ND	Pentachlorophenol	333	ND
2,4-Dimethylphenol	333	ND	Pentachloronitrobenzene	333	ND
Bis(2-Chloroethoxy)methane	333	ND	Phenantherene	333	ND
2,4-Dichlorophenol	333	ND	Anthracene	333	ND
1,2,4-Trichlorobenzene	333	ND	2,4,6-Sec-butyl-Dinitrophenol	333	ND
Naphthalene	333	ND	Di-n-Butylphthalate	333	ND
2,6-Dichlorophenol	333	' ND	4-Nitroquinoline-N-oxide	333	ND
Hexachloropropylene	333	ND	Methapyrilene	333	ND
Hexachlorobutadiene	333	ND	Fluoranthene	333	ND
4-Chloro-3-Methylphenol	333	ND	Pyrene	333	ND
1,2,4,5-Tetrachlorobenzene	333	ND	Di-methylaminoazobenzene	333	ND
hexachlorocyclopentadiene	333	ND	Butyl benzyl phthalate	333	ND
2,4,6-Trichlorophenol	333	ND	Benz(a)Anthracene	333	ND
2,4,5-Trichlorophenol	333	ND	Chrysene	333	ND
2-Chloronaphthalene	333	ND	Bis(2-Ethylhexyl)phthalate	333	ND
1,4-Naphthoquinone	333	ND	Di-n-octyl phthalate	333	ND
Acenaphthylene	333	ND	7,12-Dimethylbenz(a)anthracene	333	ND
Dimethylphthalate	333	ND	Benzo(b)fluoranthene	333	ND
2,6-Dinitrotoluene	333	ND	Benzo(k)fluoranthene	333	ND
Acenaphthene	333	ND -	Benzo(a)pyerene	333	ND
2,4-Dinitrophenol	333	ND	Indeno(1,2,3-cd) pyrene	333	ND
Pentachlorobenzene	333	ND	Di benz(a,h)anthracene	333	ND
			Benzo(g,h,i)perylene	333	ND

*All results are in parts per billion -

ND = Less than detection limit

e = estimated value

Section Chief: Dellard M

as Date Approved:

Phone: (410)-767-5582 ·

Fax: (410) 225-9318

sena Report To: <u>Richard</u> Orth <u>2300 St. Raul Street</u> <u>Battimore, MD 2121</u> LABORAT	State of Maryland MH - Laboratories Administration vision of Enviromental Chemistry CE ORGANICS SECTION Preston Street, Baltimore, Maryland 21201 ohn M. DeBoy, Dr. P.H., Director	Lab No. Date Received
Bottle No: NGSP Core 1 Plant / Site Na	ame: <u>NGSP</u> Cou	nty: GARRENT
Sample Source: 2300 St. Rul St.	Town or City	(well no., lab sink, sample tap, etc.)
Sampler ID:	PWSID:	Plant ID:
Collector: RECHARD ORT	410-554-5541 (include telephone number)	
Date Collected: 7 / 007/2008	Time Collected: <u>/</u> a.m	p.m.
Field Preserved: Yes X No Preservati	ive Used: 🗆 1:1 HCI+Ascorbic acid 🗆	$I \operatorname{Na}_2\operatorname{So}_4 \ \Box \ 6 \operatorname{mg} \operatorname{NH}_4\operatorname{CI}$
Sample Type: Drinking Water Drinking Water Drinking Water Drinking Water Drinking Water Drinking Water Drivate	Landfill Source (Raw Water) Stream Visit Distribution (Treated) Sediment Vater Treatment Plant P	□ Liquid □ Solid OE & Other &?○
Specify Program: \Box SDWA \Box NPDES	$S \square CWA \square RCRA \square Consumer$	Products X Other
Test Requested : □ Trihalomethanes	Volatiles X Semi-volatil	es 🗆 Haloacetic Acids
FIELD DATA:	Field Blank Bottle No.:	
Remarks: ANALYZE FAR FULL	SEBEPA 8270 Semi-	volatiles
Laboratory Supervisor: Dula of March 1 •Phone: (410)	767-4388 •Fax: (410) 225-9318	a: 12 13-1 1 6 8

Form Revised 12/05 DHMH 4362 Department of Health and Mental Hygiene Division of Environmental Chemistry

TRACE ORGANICS SECTION

201 W. Preston Street, Baltimore, MD 21201

John M. Deboy, Dr. P.H., Director

Certificate of Analysis - Semivolatiles

Method:	3540/8270
Date Analyzed:	12/24/08
Sample Name:	991067

- Classers

<u>Contaminants</u>	\underline{DL}	<u>Results</u>	<u>Contaminants</u>	$\underline{\mathbf{DL}}$	<u>Result</u>
Phenol	333	ND	4-Nitrrophenol	333	ND
Bis(2-Chloroethyl)ether	333	ND	2,4-Dinitrotoluene	333	ND
2-Chlorophenol	333	ND	2,3,4,6-Tetrachlorophenol	333	ND
1,3-Dichlorobenzene	333	ND	Fluorene	333	ND
1,4-Dichlorobenzene	333	ND	Diethylphthalate	333	ND
1,2-Dichlorobenzene	333	ND	4-Chlorophenyl phenyl ether	333	ND
Bis(2-Chloroisopropyl)ether	333	ND	4,6 -Dinitro-2-methylphenol	333	ND
2-Methyl phenol	333	ND	Diphenylamine	333	ND
Hexachloroethane	333	ND	4-Bromophenyl phenyl ether	333	ND
3&4-Methyl Phenol	333	ND	1,3,5-Trinitrobenzene	333	ND
Nitrobenzene	333	ND	Phenacetin	333	ND
Isophorone	333	ND	Hexachlorobenzene	333	ND
2-Nitrophenol	333	ND	Pentachlorophenol	333	ND
2,4-Dimethylphenol	333	ND	Pentachloronitrobenzene	333	ND
Bis(2-Chloroethoxy)methane	333	ND	Phenantherene	333	ND
2,4-Dichlorophenol	333	ND	Anthracene	333	ND
1,2,4-Trichlorobenzene	333	ND	2,4,6-Sec-butyl-Dinitrophenol	333	ND
Naphthalene	333	ND	Di-n-Butylphthalate	333	ND
2,6-Dichlorophenol	333	ND	4-Nitroquinoline-N-oxide	333	ND
Hexachloropropylene	333	ND	Methapyrilene	333	ND
Hexachlorobutadiene	333	ND	Fluoranthene	333	ND
4-Chloro-3-Methylphenol	333	ND	Pyrene	333	ND
1,2,4,5-Tetrachlorobenzene	333	ND	Di-methylaminoazobenzene	333	ND
hexachlorocyclopentadiene	333	ND	Butyl benzyl phthalate	333	ND
2,4,6-Trichlorophenol	333	ND	Benz(a)Anthracene	333	ND
2,4,5-Trichlorophenol	333	ND	Chrysene	333	ND
2-Chloronaphthalene	333	ND	Bis(2-Ethylhexyl)phthalate	333	ND
1,4-Naphthoquinone	333	ND	Di-n-octyl phthalate	333	ND
Acenaphthylene	333	ND	7,12-Dimethylbenz(a)anthracene	333	ND
Dimethylphthalate	333	ND	Benzo(b)fluoranthene	333	ND
2,6-Dinitrotoluene	333	ND	Benzo(k)fluoranthene	333	ND
Acenaphthene	333	ND	Benzo(a)pyerene	333	ND
2,4-Dinitrophenol	333	ND	Indeno(1,2,3-cd) pyrene	333	ND
Pentachlorobenzene	333	ND	Di benz(a,h)anthracene	333	ND

*All results are in parts per billion

ND = Less than detection limit

e = estimated value

08 Deland Section Chief: \mathbb{N} Date Approved:

Phone: (410)-767-5582

Fax: (410) 225-9318

333

ND

Benzo(g,h,i)perylene

Appendix F

Elemental Analysis Data

Sample	Interval	S	Р	Cd	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Au	Ag	Мо	AI	As	Ba	Be	Bi	Br	Ca	Co	Cs	Eu	Hf	Hg
		%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Detectio	n Limit	0.01	0.001	0.3	2	1	0.01	1	1	3	1	2	0.3	1	0.01	0.5	50	1	2	0.5	0.01	1	1	0.2	1	1
Core4	0-12	0.2	0.054	1.7	81	21	4.58	388	52	49	260	< 2	< 0.3	1	7.17	14	570	4	< 2	8	0.16	23	4	1.7	6	< 1
Core4	12-16	0.11	0.055	1.1	70	21	3.7	365	46	44	202	< 2	0.5	2	7.9	12	420	3	< 2	< 0.5	0.16	20	5	1.6	5	< 1
Core4	16-34	0.01	0.022	< 0.3	39	6	2.35	124	16	13	42	< 2	< 0.3	< 1	4.01	10	200	1	< 2	< 0.5	0.08	6	3	0.9	7	< 1
Core4	34-54	< 0.01	0.011	< 0.3	32	5	2.11	76	13	12	30	< 2	< 0.3	1	3.52	8	360	1	< 2	< 0.5	0.05	4	4	0.8	9	< 1
Core4	54-67	< 0.01	0.01	< 0.3	42	8	2.72	81	15	13	28	< 2	< 0.3	1	3.71	16	320	1	< 2	< 0.5	0.04	4	3	< 0.2	8	< 1
Core4	67-82.5	< 0.01	0.015	< 0.3	30	5	4.1	166	15	17	26	< 2	< 0.3	1	3.68	13	270	1	< 2	< 0.5	0.03	6	3	0.4	6	< 1
Core5	30-62	0.06	0.08	0.3	68	21	3.03	388	32	24	117	< 2	0.4	1	7.12	11	700	3	< 2	8	0.18	14	6	1.3	8	< 1
Core5	62-76	0.02	0.011	< 0.3	35	9	1.02	132	15	12	47	< 2	< 0.3	1	3.55	3	390	1	< 2	3	0.16	6	3	0.9	12	< 1
Core5	76-89	0.01	0.015	< 0.3	37	14	1.22	104	13	11	34	< 2	< 0.3	< 1	2.85	4	< 50	1	< 2	< 0.5	0.09	6	2	0.5	9	< 1
Core13	0-22	0.21	0.054	2.1	69	21	3.13	367	52	32	276	< 2	< 0.3	1	6.27	12	590	4	< 2	10	0.17	23	5	1.3	9	< 1
Core13	22-40	0.06	0.04	0.4	62	16	2.35	212	29	25	98	< 2	< 0.3	1	6.38	9	< 50	3	< 2	3	0.13	12	5	1.3	11	< 1
Core16	0-13	0.01	0.05	< 0.3	57	25	8.59	931	25	28	69	< 2	< 0.3	1	4.94	30	< 50	2	< 2	< 0.5	0.02	16	< 1	1.1	10	< 1
Core16	13-43	< 0.01	0.052	< 0.3	41	12	4.33	416	23	19	54	< 2	< 0.3	2	3.67	13	< 50	2	< 2	< 0.5	0.09	11	< 1	0.9	9	< 1

Sample	Interval	lr_ppb	K	Mg	Na	Sb	Rb	Sc	Se	Sr	Та	Ti	Th	U	V	W	Y	La	Ce	Nd	Sm	Sn	Tb	Yb	Lu
		ppb	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Detectio	n Limit	5	0.01	0.01	0.01	0.1	15	0.1	3	1	0.5	0.01	0.2	0.5	2	1	1	0.5	3	5	0.1	0.01	0.5	0.2	0.05
Core4	0-12	< 5	1.49	0.39	0.15	1.2	75	11.7	< 3	79	< 0.5	0.3	10.7	2.9	75	< 1	24	41.4	62	23	5.5	0.01	< 0.5	2.6	0.77
Core4	12-16	< 5	2.09	0.44	0.14	1	139	11.8	< 3	84	< 0.5	0.5	12	2.9	112	< 1	26	42	50	31	5:	0.01	1	2.5	0.57
Core4	16-34	< 5	1.15	0.19	0.08	0.9	42	5.8	< 3	45	< 0.5	0.1	7	3.2	21	< 1	16	24.4	38	9	2.9:	0.01	< 0.5	1.6	0.54
Core4	34-54	< 5	0.96	0.16	0.08	1.2	73	5.3	< 3	39	1.7	0.2	7.2	2.6	35	< 1	14	25.7	41	21	3.1:	0.01	0.6	2.1	0.57
Core4	54-67	< 5	1.13	0.18	0.08	1.1	57	5.8	< 3	40	1.8	0.2	7.4	2.9	47	< 1	14	25	46	11	2.9:	0.01	< 0.5	1.8	0.5
Core4	67-82.5	< 5	1.29	0.17	0.07	1.7	45	6	< 3	37	< 0.5	0.2	7	3	65	< 1	14	20.6	36	12	2.6:	0.01	0.6	1.8	0.45
Core5	30-62	< 5	1.95	0.44	0.22	0.8	118	11.1	< 3	82	2.4	0.6	10.7	4.1	98	< 1	26	42.8	69	23	5:	0.01	< 0.5	3	0.74
Core5	62-76	< 5	0.87	0.19	0.11	0.6	66	6.3	< 3	41	1	0.1	7.2	3.9	12	< 1	26	30.4	48	23	3.8:	0.01	< 0.5	2.5	0.66
Core5	76-89	< 5	0.74	0.17	0.08	0.5	< 15	4.9	< 3	33	1.2	0.3	6.6	3	35	< 1	19	25.1	44	17	3.1:	0.01	< 0.5	1.7	0.46
Core13	0-22	< 5	1.64	0.37	0.15	1.1	89	10.7	< 3	74	1.6	0.3	10	5.5	52	< 1	28	39.6	67	30	5.3:	0.01	< 0.5	3.3	0.78
Core13	22-40	< 5	1.66	0.36	0.14	1.2	103	10.6	< 3	70	< 0.5	0.2	10	6.5	60	< 1	27	40.4	68	27	5:	0.01	1	2.8	0.61
Core16	0-13	< 5	1.33	0.23	0.06	1.6	105	7.9	< 3	43	< 0.5	0.3	7.8	3.7	76	< 1	26	26.6	53	20	3.9:	0.01	< 0.5	1.8	0.5
Core16	13-43	< 5	1.13	0.19	0.05	1.3	< 15	6.4	< 3	41	< 0.5	0.3	6.8	4	59	< 1	24	24.2	43	< 5	3.3:	0.01	0.7	1.9	0.5

Table F-1. Laboratory Results from elemental analysis of selected samples.

Sample	Start_int E	End_Int P	Cr	Cu	Fe	Mn	Ni	Pb	2	Zn A	As a	As-correcte Ba	Co) Cs	Eu	Hf	Mg	
Core4	0	12	0.59	0.93	0.44	0.93	0.47	0.80	4.50	4.26	8.93	7.14	1.54	1.06	1.53	1.63	2.30	0.19
Core4	12	16	0.55	0.73	0.40	0.68	0.40	0.64	3.67	3.01	6.95	5.56	1.03	0.83	1.74	1.39	1.74	0.20
Core4	16	34	0.43	0.80	0.22	0.86	0.27	0.44	2.13	1.23	11.40	9.12	0.97	0.49	2.05	1.54	4.79	0.17
Core4	34	54	0.24	0.75	0.21	0.88	0.19	0.41	2.24	1.00	10.39	8.31	1.98	0.37	3.12	1.56	7.01	0.16
Core4	54	67	0.21	0.93	0.32	1.07	0.19	0.44	2.31	0.89	19.72	15.77	1.67	0.35	2.22		5.92	0.17
Core4	67	82.5	0.32	0.67	0.20	1.63	0.39	0.45	3.04	0.83	16.15	12.92	1.42	0.54	2.24	0.75	4.47	0.16
Core5	30	62	0.88	0.79	0.44	0.62	0.47	0.49	2.22	1.93	7.06	5.65	1.90	0.65	2.31	1.25	3.08	0.22
Core5	62	76	0.24	0.81	0.38	0.42	0.32	0.46	2.23	1.56	3.86	3.09	2.13	0.56	2.32	1.74	9.27	0.19
Core5	76	89	0.41	1.07	0.74	0.63	0.32	0.50	2.54	1.40	6.42	5.13		0.69	1.93	1.20	8.66	0.21
Core13	0	22	0.68	0.91	0.50	0.73	0.51	0.91	3.36	5.18	8.75	7.00	1.82	1.21	2.19	1.42	3.94	0.21
Core13	22	40	0.49	0.80	0.38	0.54	0.29	0.50	2.58	1.81	6.45	5.16		0.62	2.15	1.40	4.73	0.20
Core16	0	13	0.79	0.95	0.76	2.54	1.63	0.56	3.73	1.64	27.77	22.21		1.07		1.53	5.55	0.16
Core16	13	43	1.11	0.92	0.49	1.72	0.98	0.69	3.41	1.73	16.20	12.96		0.99		1.68	6.73	0.18
	Ν	Mean	0.53	0.85	0.42	1.02	0.49	0.56	2.92	2.04	11.54	9.23	1.61	0.72	2.16	1.42	5.25	0.19
Sample	Start_int	End_Int S	Sb I	Rb	Sc	Sr	Ti	Th	U	V	Y	La	Ce	Nd	Sm	Yb	Lu	
Sample Core4	Start_int 0	End_Int S	Sb I 6.89	Rb 0.96	Sc 0.61	Sr 0.24	Ti 0.62	Th 1.	U 28	V 1.23	Y 0.64	La 0.83	Ce 1.58	Nd 1.19	Sm 0.94	Yb 1.05	Lu 0.99	1.77
Sample Core4 Core4	Start_int 0 12	End_Int 5 12 16	Sb I 6.89 5.21	Rb 0.96 1.61	Sc 0.61 0.56	Sr 0.24 0.23	Ti 0.62 0.95	Th 1. 1.	U 28 30	V 1.23 1.12	Y 0.64 0.86	La 0.83 0.82	Ce 1.58 1.46	Nd 1.19 0.87	Sm 0.94 1.15	Yb 1.05 0.87	Lu 0.99 0.87	1.77 1.19
Sample Core4 Core4 Core4	Start_int 0 12 16	End_Int 5 12 16 34	Sb I 6.89 5.21 9.24	Rb 0.96 1.61 0.96	Sc 0.61 0.56 0.54	Sr 0.24 0.23 0.25	Ti 0.62 0.95 0.40	Th 1. 1. 1.	U 28 30 50	V 1.23 1.12 2.43	Y 0.64 0.86 0.32	La 0.83 0.82 1.00	Ce 1.58 1.46 1.67	Nd 1.19 0.87 1.30	Sm 0.94 1.15 0.66	Yb 1.05 0.87 0.99	Lu 0.99 0.87 1.09	1.77 1.19 2.22
Sample Core4 Core4 Core4 Core4	Start_int 0 12 16 34	End_Int 5 12 16 34 54	Sb 6.89 5.21 9.24 14.03	Rb 0.96 1.61 0.96 1.90	Sc 0.61 0.56 0.54 0.56	Sr 0.24 0.23 0.25 0.24	Ti 0.62 0.95 0.40 0.82	Th 1. 1. 1. 1.	U 28 30 50 75	V 1.23 1.12 2.43 2.25	Y 0.64 0.86 0.32 0.61	La 0.83 0.82 1.00 0.99	Ce 1.58 1.46 1.67 2.00	Nd 1.19 0.87 1.30 1.60	Sm 0.94 1.15 0.66 1.75	Yb 1.05 0.87 0.99 1.21	Lu 0.99 0.87 1.09 1.64	1.77 1.19 2.22 2.67
Sample Core4 Core4 Core4 Core4 Core4	Start_int 0 12 16 34 54	End_Int 5 12 16 34 54 67	6b 1 6.89 5.21 9.24 14.03 12.20	Rb 0.96 1.61 0.96 1.90 1.40	Sc 0.61 0.56 0.54 0.56 0.58	Sr 0.24 0.23 0.25 0.24 0.24	Ti 0.62 0.95 0.40 0.82 0.78	Th 1. 1. 1. 1. 1.	U 28 30 50 75 71	V 1.23 1.12 2.43 2.25 2.38	Y 0.64 0.86 0.32 0.61 0.77	La 0.83 0.82 1.00 0.99 0.94	Ce 1.58 1.46 1.67 2.00 1.85	Nd 1.19 0.87 1.30 1.60 1.70	Sm 0.94 1.15 0.66 1.75 0.87	Yb 1.05 0.87 0.99 1.21 1.07	Lu 0.99 0.87 1.09 1.64 1.33	1.77 1.19 2.22 2.67 2.22
Sample Core4 Core4 Core4 Core4 Core4 Core4	Start_int 0 12 16 34 54 67	End_Int 5 12 16 34 54 67 82.5	Sb 6.89 5.21 9.24 14.03 12.20 19.01	Rb 0.96 1.61 0.96 1.90 1.40 1.12	Sc 0.61 0.56 0.54 0.56 0.58 0.61	Sr 0.24 0.23 0.25 0.24 0.24 0.22	Ti 0.62 0.95 0.40 0.82 0.78 0.82	Th 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63	V 1.23 1.12 2.43 2.25 2.38 2.48	Y 0.64 0.86 0.32 0.61 0.77 1.08	La 0.83 0.82 1.00 0.99 0.94 0.95	Ce 1.58 1.46 1.67 2.00 1.85 1.54	Nd 1.19 0.87 1.30 1.60 1.70 1.34	Sm 0.94 1.15 0.66 1.75 0.87 0.96	Yb 1.05 0.87 0.99 1.21 1.07 0.97	Lu 0.99 0.87 1.09 1.64 1.33 1.34	1.77 1.19 2.22 2.67 2.22 2.01
Sample Core4 Core4 Core4 Core4 Core4 Core4 Core5	Start_int 0 12 16 34 54 67 30	End_Int 5 12 16 34 54 67 82.5 62	6.89 5.21 9.24 14.03 12.20 19.01 4.62	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58	Sr 0.24 0.23 0.25 0.24 0.24 0.22 0.25	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16	Th 1. 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63 29	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95	Yb 1.05 0.87 0.99 1.21 1.07 0.97 0.96	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16	1.77 1.19 2.22 2.67 2.22 2.01 1.71
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5	Start_int 0 12 16 34 54 67 30 62	End_Int 2 12 16 34 54 67 82.5 62 76	5b 6.89 5.21 9.24 14.03 12.20 19.01 4.62 6.95	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52 1.70	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58 0.66	Sr 0.24 0.23 0.25 0.24 0.24 0.22 0.25 0.25	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16 0.28	Th 1. 1. 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63 29 74	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76 3.35	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84 0.21	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91 1.83	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65 2.35	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33 1.85	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95 1.90	Yb 1.05 0.87 0.99 1.21 1.07 0.97 0.96 1.47	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16 1.93	1.77 1.19 2.22 2.67 2.22 2.01 1.71 3.06
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5 Core5	Start_int 0 12 16 34 54 67 30 62 76	End_Int 2 12 16 34 54 67 82.5 62 76 89	5b 6.89 5.21 9.24 14.03 12.20 19.01 4.62 6.95 7.22	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52 1.70	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58 0.66 0.64	Sr 0.24 0.23 0.25 0.24 0.24 0.22 0.25 0.25 0.25	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16 0.28 1.27	Th 1. 1. 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63 29 74 99	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76 3.35 3.21	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84 0.21 0.75	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91 1.83 1.66	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65 2.35 2.42	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33 1.85 2.12	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95 1.90 1.75	Yb 1.05 0.87 0.99 1.21 1.07 0.97 0.96 1.47 1.49	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16 1.93 1.64	1.77 1.19 2.22 2.67 2.22 2.01 1.71 3.06 2.66
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core5 Core13	Start_int 0 12 16 34 54 67 30 62 76 0	End_Int 2 12 16 34 54 67 82.5 62 76 89 22	5b 1 6.89 5.21 9.24 14.03 12.20 19.01 4.62 6.95 7.22 7.22	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52 1.70	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58 0.66 0.64 0.64	Sr 0.24 0.23 0.25 0.24 0.24 0.22 0.25 0.25 0.25 0.25 0.26	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16 0.28 1.27 0.76	Th 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63 29 74 99 37	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76 3.35 3.21 2.67	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84 0.21 0.75 0.51	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91 1.83 1.66 1.11	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65 2.35 2.42 1.73	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33 1.85 2.12 1.47	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95 1.90 1.75 1.41	Yb 1.05 0.87 0.99 1.21 1.07 0.97 0.96 1.47 1.49 1.16	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16 1.93 1.64 1.44	1.77 1.19 2.22 2.67 2.22 2.01 1.71 3.06 2.66 2.05
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core5 Core13 Core13	Start_int 0 12 16 34 54 67 30 62 76 0 22	End_Int 12 16 34 54 67 82.5 62 76 89 22 40	5b 6.89 5.21 9.24 14.03 12.20 19.01 4.62 6.95 7.22 7.22 7.74	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52 1.70 1.30 1.48	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58 0.66 0.64 0.64 0.62	Sr 0.24 0.23 0.25 0.24 0.24 0.22 0.25 0.25 0.25 0.25 0.26 0.24	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16 0.28 1.27 0.76 0.54	Th 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63 29 74 99 37 34	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76 3.35 3.21 2.67 3.11	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84 0.21 0.75 0.51 0.57	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91 1.83 1.66 1.11 1.06	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65 2.35 2.42 1.73 1.74	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33 1.85 2.12 1.47 1.46	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95 1.90 1.75 1.41 1.24	Yb 1.05 0.87 0.99 1.21 1.07 0.97 0.96 1.47 1.49 1.16 1.07	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16 1.93 1.64 1.44 1.20	1.77 1.19 2.22 2.67 2.22 2.01 1.71 3.06 2.66 2.05 1.57
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core5 Core13 Core13 Core16	Start_int 0 12 16 34 54 67 30 62 76 0 22 0	End_Int 5 12 16 34 54 67 82.5 62 76 89 22 40 13	5b 1 6.89 5.21 9.24 14.03 12.20 19.01 4.62 6.95 7.22 7.22 7.74 13.33	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52 1.70 1.30 1.48 1.94	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58 0.66 0.64 0.64 0.62 0.60	Sr 0.24 0.23 0.25 0.24 0.24 0.22 0.25 0.25 0.25 0.25 0.26 0.26 0.24 0.24 0.24	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16 0.28 1.27 0.76 0.54 0.82	Th 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63 29 74 99 37 34 35	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76 3.35 3.21 2.67 3.11 2.28	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84 0.21 0.75 0.51 0.57 0.94	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91 1.83 1.66 1.11 1.06 1.31	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65 2.35 2.42 1.73 1.74 1.48	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33 1.85 2.12 1.47 1.46 1.47	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95 1.90 1.75 1.41 1.24 1.19	Yb 1.05 0.87 0.99 1.21 1.07 0.97 0.96 1.47 1.49 1.16 1.07 1.08	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16 1.93 1.64 1.44 1.20 1.00	1.77 1.19 2.22 2.67 2.22 2.01 1.71 3.06 2.66 2.05 1.57 1.67
Sample Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core13 Core13 Core16 Core16	Start_int 0 12 16 34 54 67 30 62 76 0 22 0 13	End_Int 5 12 16 34 54 67 82.5 62 76 89 22 40 13 43	5b 1 6.89 5.21 9.24 14.03 12.20 19.01 4.62 6.95 7.22 7.22 7.74 13.33 14.58	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52 1.70 1.30 1.48 1.94	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58 0.66 0.64 0.64 0.62 0.60 0.65	Sr 0.24 0.23 0.25 0.24 0.24 0.22 0.25 0.25 0.25 0.25 0.26 0.24 0.24 0.29 0.26	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16 0.28 1.27 0.76 0.54 0.82 0.98	Th 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	U 28 30 50 75 71 63 29 74 99 37 34 35 59	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76 3.35 3.21 2.67 3.11 2.28 3.32	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84 0.21 0.75 0.51 0.57 0.94 0.98	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91 1.83 1.66 1.11 1.06 1.31 1.63	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65 2.35 2.42 1.73 1.74 1.48 1.81	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33 1.85 2.12 1.47 1.46 1.47 1.61	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95 1.90 1.75 1.41 1.24 1.19	Yb 1.05 0.87 0.99 1.21 1.07 0.97 0.96 1.47 1.49 1.16 1.07 1.08 1.23	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16 1.93 1.64 1.44 1.20 1.00 1.42	1.77 1.19 2.22 2.67 2.22 2.01 1.71 3.06 2.65 1.57 1.67 2.24
Sample Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core13 Core13 Core16 Core16	Start_int 0 12 16 34 54 67 30 62 76 0 22 0 13	End_Int 12 16 34 54 67 82.5 62 76 89 22 40 13 43 Mean	5b 1 6.89 5.21 9.24 14.03 12.20 19.01 4.62 6.95 7.22 7.22 7.22 7.74 13.33 14.58 9.86	Rb 0.96 1.61 0.96 1.90 1.40 1.12 1.52 1.70 1.30 1.48 1.94	Sc 0.61 0.56 0.54 0.56 0.58 0.61 0.58 0.66 0.64 0.64 0.62 0.60 0.65 0.61	Sr 0.24 0.23 0.25 0.24 0.22 0.25 0.25 0.25 0.25 0.25 0.26 0.24 0.19 0.25 0.24	Ti 0.62 0.95 0.40 0.82 0.78 0.82 1.16 0.28 1.27 0.76 0.54 0.82 0.98 0.79	Th 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	U 28 30 50 75 71 63 29 74 99 37 34 35 59 53	V 1.23 1.12 2.43 2.25 2.38 2.48 1.76 3.35 3.21 2.67 3.11 2.28 3.32 2.43	Y 0.64 0.86 0.32 0.61 0.77 1.08 0.84 0.21 0.75 0.51 0.57 0.94 0.98 0.70	La 0.83 0.82 1.00 0.99 0.94 0.95 0.91 1.83 1.66 1.11 1.06 1.31 1.63 1.16	Ce 1.58 1.46 1.67 2.00 1.85 1.54 1.65 2.35 2.42 1.73 1.74 1.48 1.81 1.79	Nd 1.19 0.87 1.30 1.60 1.70 1.34 1.33 1.85 2.12 1.47 1.46 1.47 1.61 1.48	Sm 0.94 1.15 0.66 1.75 0.87 0.96 0.95 1.90 1.75 1.41 1.24 1.19 1.23	Yb 1.05 0.87 0.99 1.21 1.07 0.96 1.47 1.49 1.16 1.07 1.08 1.23 1.13	Lu 0.99 0.87 1.09 1.64 1.33 1.34 1.16 1.93 1.64 1.44 1.20 1.00 1.42 1.31	1.77 1.19 2.22 2.67 2.22 2.01 1.71 3.06 2.66 2.05 1.57 1.67 2.24 2.08

Table F-2. Enrichment Factors based on Aluminum

Core4 Core4 Core4	0		01	Ou	IVITI	INI	PD	Zn	AI	F	AS A	As-correcte Ba	a Co	o Cs	EU	HI	ivig	
Core4 Core4	0	12	0.63	1.00	0.47	0.50	0.85	4.82	4.57	1.07	9.56	7.65	1.65	1.13	1.64	1.74	2.46	0.21
Core4	12	16	0.80	1.07	0.58	0.58	0.93	5.36	4.39	1.46	10.14	8.12	1.50	1.22	2.54	2.03	2.54	0.29
Core4	16	34	0.50	0.93	0.26	0.31	0.51	2.49	1.44	1.17	13.31	10.65	1.13	0.57	2.40	1.80	5.59	0.20
00104	34	54	0.28	0.85	0.24	0.21	0.46	2.56	1.14	1.14	11.86	9.49	2.26	0.43	3.56	1.78	8.00	0.18
Core4	54	67	0.20	0.87	0.30	0.18	0.41	2.15	0.83	0.93	18.40	14.72	1.56	0.33	2.07		5.52	0.16
Core4	67	82.5	0.20	0.41	0.12	0.24	0.27	1.87	0.51	0.61	9.92	7.93	0.87	0.33	1.37	0.46	2.75	0.10
Core5	30	62	1.42	1.26	0.71	0.76	0.79	3.57	3.11	1.61	11.35	9.08	3.06	1.04	3.72	2.01	4.95	0.35
Core5	62	76	0.58	1.93	0.90	0.77	1.10	5.30	3.71	2.38	9.20	7.36	5.07	1.32	5.52	4.14	22.08	0.45
Core5	76	89	0.66	1.71	1.17	0.51	0.80	4.06	2.24	1.60	10.26	8.20		1.11	3.08	1.92	13.84	0.34
Core13	0	22	0.93	1.24	0.69	0.69	1.25	4.60	7.09	1.37	11.99	9.59	2.50	1.65	3.00	1.95	5.40	0.29
Core13	22	40	0.91	1.49	0.70	0.53	0.93	4.79	3.35	1.86	11.98	9.58		1.15	3.99	2.60	8.78	0.37
Core16	0	13	0.31	0.37	0.30	0.64	0.22	1.47	0.65	0.39	10.92	8.74		0.42		0.60	2.18	0.06
Core16	13	43	0.64	0.53	0.28	0.57	0.40	1.98	1.00	0.58	9.39	7.51		0.57		0.98	3.90	0.11
	N	Mean	0.62	1.05	0.52	0.50	0.69	3.46	2.62	1.24	11.41	9.13	2.18	0.87	2.99	1.83	6.77	0.24
Sample	Start int	End Int S	b F	Rb	Sc	Sr	Ti	Th	U	V	Y	La	Ce	Nd	Sm	Yb	Lu	
Sample Core4	Start_int 0	End_Int S	b F 7.38	Rb 1.02	Sc 0.65	Sr 0.26	Ti 0.67	Th 1.37	U 1	V .32	Y 0.68	La 0.89	Ce 1.70	Nd 1.27	Sm 1.01	Yb 1.13	Lu 1.07	1.89
Sample Core4 Core4	Start_int 0 12	End_Int S 12 16	b F 7.38 7.61	Rb 1.02 2.35	Sc 0.65 0.82	Sr 0.26 0.34	Ti 0.67 1.39	Th 1.37 1.90	U 1	V .32 .63	Y 0.68 1.26	La 0.89 1.20	Ce 1.70 2.13	Nd 1.27 1.27	Sm 1.01 1.68	Yb 1.13 1.27	Lu 1.07 1.27	1.89 1.73
Sample Core4 Core4 Core4	Start_int 0 12 16	End_Int S 12 16 34	b F 7.38 7.61 10.78	Rb 1.02 2.35 1.12	Sc 0.65 0.82 0.63	Sr 0.26 0.34 0.29	Ti 0.67 1.39 0.46	Th 1.37 1.90 1.75	U 1 1 2	V .32 .63 2.84	Y 0.68 1.26 0.37	La 0.89 1.20 1.16	Ce 1.70 2.13 1.95	Nd 1.27 1.27 1.52	Sm 1.01 1.68 0.77	Yb 1.13 1.27 1.16	Lu 1.07 1.27 1.28	1.89 1.73 2.59
Sample Core4 Core4 Core4 Core4	Start_int 0 12 16 34	End_Int S 12 16 34 54	b F 7.38 7.61 10.78 16.01	Rb 1.02 2.35 1.12 2.16	Sc 0.65 0.82 0.63 0.64	Sr 0.26 0.34 0.29 0.28	Ti 0.67 1.39 0.46 0.94	Th 1.37 1.90 1.75 2.00	U 1 2 2	V .32 .63 2.84 2.57	Y 0.68 1.26 0.37 0.69	La 0.89 1.20 1.16 1.13	Ce 1.70 2.13 1.95 2.29	Nd 1.27 1.27 1.52 1.82	Sm 1.01 1.68 0.77 2.00	Yb 1.13 1.27 1.16 1.38	Lu 1.07 1.27 1.28 1.87	1.89 1.73 2.59 3.04
Sample Core4 Core4 Core4 Core4 Core4	Start_int 0 12 16 34 54	End_Int S 12 16 34 54 67	b F 7.38 7.61 10.78 16.01 11.38	Rb 1.02 2.35 1.12 2.16 1.31	Sc 0.65 0.82 0.63 0.64 0.55	Sr 0.26 0.34 0.29 0.28 0.22	Ti 0.67 1.39 0.46 0.94 0.73	Th 1.37 1.90 1.75 2.00 1.60	U 1 1 2 2	V .32 .63 2.84 2.57 2.22	Y 0.68 1.26 0.37 0.69 0.72	La 0.89 1.20 1.16 1.13 0.88	Ce 1.70 2.13 1.95 2.29 1.72	Nd 1.27 1.27 1.52 1.82 1.59	Sm 1.01 1.68 0.77 2.00 0.81	Yb 1.13 1.27 1.16 1.38 1.00	Lu 1.07 1.27 1.28 1.87 1.24	1.89 1.73 2.59 3.04 2.07
Sample Core4 Core4 Core4 Core4 Core4 Core4	Start_int 0 12 16 34 54 67	End_Int S 12 16 34 54 67 82.5	b F 7.38 7.61 10.78 16.01 11.38 11.67	Rb 1.02 2.35 1.12 2.16 1.31 0.69	Sc 0.65 0.82 0.63 0.64 0.55 0.37	Sr 0.26 0.34 0.29 0.28 0.22 0.14	Ti 0.67 1.39 0.46 0.94 0.73 0.51	Th 1.37 1.90 1.75 2.00 1.60 1.00	U 1 2 2 2	V .32 .63 2.84 2.57 2.22 .53	Y 0.68 1.26 0.37 0.69 0.72 0.66	La 0.89 1.20 1.16 1.13 0.88 0.58	Ce 1.70 2.13 1.95 2.29 1.72 0.94	Nd 1.27 1.27 1.52 1.82 1.59 0.82	Sm 1.01 1.68 0.77 2.00 0.81 0.59	Yb 1.13 1.27 1.16 1.38 1.00 0.60	Lu 1.07 1.27 1.28 1.87 1.24 0.82	1.89 1.73 2.59 3.04 2.07 1.24
Sample Core4 Core4 Core4 Core4 Core4 Core5	Start_int 0 12 16 34 54 67 30	End_Int S 12 16 34 54 67 82.5 62	b F 7.38 7.61 10.78 16.01 11.38 11.67 7.43	Rb 1.02 2.35 1.12 2.16 1.31 0.69 2.44	Sc 0.65 0.82 0.63 0.64 0.55 0.37 0.94	Sr 0.26 0.34 0.29 0.28 0.22 0.14 0.41	Ti 0.67 1.39 0.46 0.94 0.73 0.51 1.86	Th 1.37 1.90 1.75 2.00 1.60 1.00 2.07	U 1 1 2 2 2 1	V .32 .63 2.84 2.57 2.22 .53 2.82	Y 0.68 1.26 0.37 0.69 0.72 0.66 1.35	La 0.89 1.20 1.16 1.13 0.88 0.58 1.46	Ce 1.70 2.13 1.95 2.29 1.72 0.94 2.65	Nd 1.27 1.27 1.52 1.82 1.59 0.82 2.14	Sm 1.01 1.68 0.77 2.00 0.81 0.59 1.53	Yb 1.13 1.27 1.16 1.38 1.00 0.60 1.55	Lu 1.07 1.27 1.28 1.87 1.24 0.82 1.86	1.89 1.73 2.59 3.04 2.07 1.24 2.75
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5	Start_int 0 12 16 34 54 67 30 62	End_Int S 12 16 34 54 67 82.5 62 76	b F 7.38 7.61 10.78 16.01 11.38 11.67 7.43 16.56	Rb 1.02 2.35 1.12 2.16 1.31 0.69 2.44 4.05	Sc 0.65 0.82 0.63 0.64 0.55 0.37 0.94 1.58	Sr 0.26 0.34 0.29 0.28 0.22 0.14 0.41 0.60	Ti 0.67 1.39 0.46 0.94 0.73 0.51 1.86 0.68	Th 1.37 1.90 1.75 2.00 1.60 1.00 2.07 4.14	U 1 1 2 2 2 1 2 7	V .32 .63 2.84 2.57 2.22 .53 2.82 2.97	Y 0.68 1.26 0.37 0.69 0.72 0.66 1.35 0.49	La 0.89 1.20 1.16 1.13 0.88 0.58 1.46 4.35	Ce 1.70 2.13 1.95 2.29 1.72 0.94 2.65 5.59	Nd 1.27 1.27 1.52 1.82 1.59 0.82 2.14 4.42	Sm 1.01 1.68 0.77 2.00 0.81 0.59 1.53 4.53	Yb 1.13 1.27 1.16 1.38 1.00 0.60 1.55 3.50	Lu 1.07 1.27 1.28 1.87 1.24 0.82 1.86 4.60	1.89 1.73 2.59 3.04 2.07 1.24 2.75 7.29
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5 Core5	Start_int 0 12 16 34 54 67 30 62 76	End_Int S 12 16 34 54 67 82.5 62 76 89	b F 7.38 7.61 10.78 16.01 11.38 11.67 7.43 16.56 11.54	Rb 1.02 2.35 1.12 2.16 1.31 0.69 2.44 4.05	Sc 0.65 0.82 0.63 0.64 0.55 0.37 0.94 1.58 1.03	Sr 0.26 0.34 0.29 0.28 0.22 0.14 0.41 0.60 0.41	Ti 0.67 1.39 0.46 0.94 0.73 0.51 1.86 0.68 2.02	Th 1.37 1.90 1.75 2.00 1.60 1.00 2.07 4.14 3.17	U 1 1 2 2 2 1 2 7 5	V .32 .63 2.84 2.57 2.22 .53 2.82 2.97 5.13	Y 0.68 1.26 0.37 0.69 0.72 0.66 1.35 0.49 1.20	La 0.89 1.20 1.16 1.13 0.88 0.58 1.46 4.35 2.66	Ce 1.70 2.13 1.95 2.29 1.72 0.94 2.65 5.59 3.86	Nd 1.27 1.27 1.52 1.82 1.59 0.82 2.14 4.42 3.38	Sm 1.01 1.68 0.77 2.00 0.81 0.59 1.53 4.53 2.80	Yb 1.13 1.27 1.16 1.38 1.00 0.60 1.55 3.50 2.38	Lu 1.07 1.27 1.28 1.87 1.24 0.82 1.86 4.60 2.62	1.89 1.73 2.59 3.04 2.07 1.24 2.75 7.29 4.25
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core5 Core13	Start_int 0 12 16 34 54 67 30 62 76 0 0	End_Int S 12 16 34 54 67 82.5 62 76 89 22	b F 7.38 7.61 10.78 16.01 11.38 11.67 7.43 16.56 11.54 9.89	Rb 1.02 2.35 1.12 2.16 1.31 0.69 2.44 4.05 1.78	Sc 0.65 0.82 0.63 0.64 0.55 0.37 0.94 1.58 1.03 0.87	Sr 0.26 0.34 0.29 0.28 0.22 0.14 0.41 0.60 0.41 0.35	Ti 0.67 1.39 0.46 0.94 0.73 0.51 1.86 0.68 2.02 1.04	Th 1.37 1.90 1.75 2.00 1.60 1.00 2.07 4.14 3.17 1.87	U 1 1 2 2 2 1 2 7 5 3	V .32 .63 2.84 2.57 2.22 .53 2.82 7.97 5.13 3.66	Y 0.68 1.26 0.37 0.69 0.72 0.66 1.35 0.49 1.20 0.69	La 0.89 1.20 1.16 1.13 0.88 0.58 1.46 4.35 2.66 1.53	Ce 1.70 2.13 1.95 2.29 1.72 0.94 2.65 5.59 3.86 2.37	Nd 1.27 1.52 1.52 1.59 0.82 2.14 4.42 3.38 2.01	Sm 1.01 1.68 0.77 2.00 0.81 0.59 1.53 4.53 2.80 1.93	Yb 1.13 1.27 1.16 1.38 1.00 0.60 1.55 3.50 2.38 1.59	Lu 1.07 1.27 1.28 1.87 1.24 0.82 1.86 4.60 2.62 1.98	1.89 1.73 2.59 3.04 2.07 1.24 2.75 7.29 4.25 2.81
Sample Core4 Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core13 Core13	Start_int 0 12 16 34 54 67 30 62 76 0 22	End_Int S 12 16 34 54 67 82.5 62 76 89 22 40	b F 7.38 7.61 10.78 16.01 11.38 11.67 7.43 16.56 11.54 9.89 14.37	Rb 1.02 2.35 1.12 2.16 1.31 0.69 2.44 4.05 1.78 2.74	Sc 0.65 0.82 0.63 0.64 0.55 0.37 0.94 1.58 1.03 0.87 1.15	Sr 0.26 0.34 0.29 0.28 0.22 0.14 0.41 0.60 0.41 0.35 0.45	Ti 0.67 1.39 0.46 0.94 0.73 0.51 1.86 0.68 2.02 1.04 1.01	Th 1.37 1.90 1.75 2.00 1.60 1.00 2.07 4.14 3.17 1.87 2.50	U 1 1 2 2 2 1 2 7 7 5 3 3 5	V .32 .63 2.84 2.57 2.22 .53 2.82 7.97 5.13 3.66 5.77	Y 0.68 1.26 0.37 0.69 0.72 0.66 1.35 0.49 1.20 0.69 1.06	La 0.89 1.20 1.16 1.13 0.88 0.58 1.46 4.35 2.66 1.53 1.96	Ce 1.70 2.13 1.95 2.29 1.72 0.94 2.65 5.59 3.86 2.37 3.23	Nd 1.27 1.52 1.52 1.59 0.82 2.14 4.42 3.38 2.01 2.72	Sm 1.01 1.68 0.77 2.00 0.81 0.59 1.53 4.53 2.80 1.93 2.31	Yb 1.13 1.27 1.16 1.38 1.00 0.60 1.55 3.50 2.38 1.59 2.00	Lu 1.07 1.27 1.28 1.87 1.24 0.82 1.86 4.60 2.62 1.98 2.24	1.89 1.73 2.59 3.04 2.07 1.24 2.75 7.29 4.25 2.81 2.92
Sample Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core5 Core13 Core13 Core16	Start_int 0 12 16 34 54 67 30 62 76 0 22 0	End_Int S 12 16 34 54 67 82.5 62 76 89 22 40 13	b F 7.38 7.61 10.78 16.01 11.38 11.67 7.43 16.56 11.54 9.89 14.37 5.24	Rb 1.02 2.35 1.12 2.16 1.31 0.69 2.44 4.05 1.78 2.74 0.76	Sc 0.65 0.82 0.63 0.64 0.55 0.37 0.94 1.58 1.03 0.87 1.15 0.24	Sr 0.26 0.34 0.29 0.28 0.22 0.14 0.41 0.60 0.41 0.35 0.45 0.08	Ti 0.67 1.39 0.46 0.94 0.73 0.51 1.86 0.68 2.02 1.04 1.01 0.32	Th 1.37 1.90 1.75 2.00 1.60 1.00 2.07 4.14 3.17 1.87 2.50 0.53	U 1 2 2 2 2 2 7 7 5 5 3 3 5 0	V .32 .63 2.84 2.57 2.22 .53 2.82 7.97 5.13 3.66 5.77 0.90	Y 0.68 1.26 0.37 0.69 0.72 0.66 1.35 0.49 1.20 0.69 1.06 0.37	La 0.89 1.20 1.16 1.13 0.88 0.58 1.46 4.35 2.66 1.53 1.96 0.52	Ce 1.70 2.13 1.95 2.29 1.72 0.94 2.65 5.59 3.86 2.37 3.23 0.58	Nd 1.27 1.27 1.52 1.59 0.82 2.14 4.42 3.38 2.01 2.72 0.58	Sm 1.01 1.68 0.77 2.00 0.81 0.59 1.53 4.53 2.80 1.93 2.31 0.47	Yb 1.13 1.27 1.16 1.38 1.00 0.60 1.55 3.50 2.38 1.59 2.00 0.43	Lu 1.07 1.27 1.28 1.87 1.24 0.82 1.86 4.60 2.62 1.98 2.24 0.39	1.89 1.73 2.59 3.04 2.07 1.24 2.75 7.29 4.25 2.81 2.92 0.66
Sample Core4 Core4 Core4 Core4 Core5 Core5 Core5 Core13 Core16	Start_int 0 12 16 34 54 67 30 62 76 0 22 0 13	End_Int S 12 16 34 54 67 82.5 62 76 89 22 40 13 43	b F 7.38 7.61 10.78 16.01 11.38 11.67 7.43 16.56 11.54 9.89 14.37 5.24 8.45	Rb 1.02 2.35 1.12 2.16 1.31 0.69 2.44 4.05 1.78 2.74 0.76	Sc 0.65 0.82 0.63 0.64 0.55 0.37 0.94 1.58 1.03 0.87 1.15 0.24 0.38	Sr 0.26 0.34 0.29 0.28 0.22 0.14 0.41 0.60 0.41 0.35 0.45 0.08 0.14	Ti 0.67 1.39 0.46 0.94 0.73 0.51 1.86 0.68 2.02 1.04 1.01 0.32 0.57	Th 1.37 1.90 1.75 2.00 1.60 1.00 2.07 4.14 3.17 1.87 2.50 0.53 0.92	U 1 2 2 2 2 2 3 3 5 5 3 3 5 1 1	V .32 .63 2.84 2.57 2.22 .53 2.82 2.97 3.13 3.66 5.77 .990 .93	Y 0.68 1.26 0.37 0.69 0.72 0.66 1.35 0.49 1.20 0.69 1.06 0.37 0.57	La 0.89 1.20 1.16 1.13 0.88 0.58 1.46 4.35 2.66 1.53 1.96 0.52 0.95	Ce 1.70 2.13 1.95 2.29 1.72 0.94 2.65 5.59 3.86 2.37 3.23 0.58 1.05	Nd 1.27 1.27 1.52 1.59 0.82 2.14 4.42 3.38 2.01 2.72 0.58 0.93	Sm 1.01 1.68 0.77 2.00 0.81 0.59 1.53 4.53 2.80 1.93 2.31 0.47	Yb 1.13 1.27 1.16 1.38 1.00 0.60 1.55 3.50 2.38 1.59 2.00 0.43 0.72	Lu 1.07 1.27 1.28 1.87 1.24 0.82 1.86 4.60 2.62 1.98 2.24 0.39 0.82	1.89 1.73 2.59 3.04 2.07 1.24 2.75 7.29 4.25 2.81 2.92 0.66 1.30

Table F-3. Enrichment Factors based on Iron.

Table F-4. Correlation matrix for element concentrations and sediment textural data based on selected core samples. The correlations were performed using Pearson product-moment technique. Values listed in table are Pearson correlation coefficients (r). Sample sizes (N) for correlations range from 9 to 13. Critical value (Student's t distribution with N-2 degrees of freedom) at 95% is 2.2. Non significant r-values are indicated by grey type.

	%H20	Blk D.	GRAVEL	SAND	SILT	CLAY	Mg	Sb	Rb	Sc	Sr	Ti	Th	U	V	Y	La	Ce	Nd	Sm	Yb	Lu
% H20	1.00																					
Blk D.	-0.98	1.00																				
GRAVEL	-0.65	0.77	1.00																			
SAND	-0.77	0.67	0.09	1.00																		
SILT	0.95	-0.94	-0.70	-0.68	1.00																	
CLAY	0.88	-0.88	-0.62	-0.77	0.75	1.00																
Mg	0.83	-0.78	-0.31	-0.93	0.72	0.89	1.00															
Sb	-0.35	0.46	0.63	-0.11	-0.33	-0.28	-0.08	1.00														
Rb	0.53	-0.50	-0.14	-0.64	0.47	0.54	0.78	-0.22	1.00													
Sc	0.81	-0.74	-0.21	-0.96	0.69	0.84	0.98	0.06	0.73	1.00												
Sr	0.86	-0.81	-0.37	-0.92	0.75	0.92	0.99	-0.08	0.73	0.97	1.00											
Ti	0.45	-0.40	-0.07	-0.69	0.34	0.64	0.81	-0.02	0.83	0.73	0.76	1.00										
Th	0.81	-0.77	-0.35	-0.88	0.69	0.89	0.98	-0.03	0.77	0.97	0.98	0.78	1.00									
U	0.42	-0.37	-0.02	-0.50	0.58	0.15	0.39	0.02	0.37	0.43	0.37	0.07	0.31	1.00								
V	0.28	-0.20	0.18	-0.67	0.13	0.52	0.74	0.33	0.68	0.73	0.69	0.90	0.75	0.02	1.00							
Y	0.58	-0.50	0.11	-0.77	0.49	0.42	0.69	-0.14	0.71	0.73	0.64	0.46	0.62	0.64	0.41	1.00						
La	0.91	-0.87	-0.44	-0.89	0.82	0.89	0.96	-0.22	0.77	0.95	0.96	0.69	0.95	0.46	0.57	0.73	1.00					
Ce	0.79	-0.72	-0.22	-0.86	0.78	0.65	0.82	-0.10	0.64	0.83	0.80	0.56	0.76	0.68	0.44	0.76	0.87	1.00				
Nd	0.67	-0.61	-0.16	-0.70	0.62	0.52	0.73	-0.11	0.84	0.75	0.71	0.55	0.74	0.50	0.46	0.82	0.80	0.68	1.00			
Sm	0.88	-0.80	-0.27	-0.93	0.77	0.80	0.93	-0.09	0.73	0.96	0.93	0.63	0.91	0.50	0.56	0.82	0.97	0.90	0.83	1.00		
Yb	0.88	-0.83	-0.42	-0.82	0.90	0.72	0.81	-0.18	0.64	0.80	0.82	0.52	0.77	0.62	0.35	0.71	0.88	0.86	0.81	0.87	1.00	
Lu	0.89	-0.84	-0.46	-0.78	0.84	0.76	0.71	-0.25	0.38	0.72	0.75	0.37	0.67	0.39	0.18	0.59	0.81	0.79	0.61	0.82	0.89	1.00

	%H20	Blk D.	GRAVEL	SAND	SILT	CLAY	P	Cr	Cu	Fe	Mn	Ni	Pb	Zn	Al	As	Ba	Co	Cs	Eu	Hf
%H20	1.00																				
Blk D.	-0.98	1.00																			
GRAVEL	-0.65	0.77	1.00																		
SAND	-0.77	0.67	0.09	1.00																	
SILT	0.95	-0.94	-0.70	-0.68	1.00																
CLAY	0.88	-0.88	-0.62	-0.77	0.75	1.00															
Р	0.49	-0.38	0.18	-0.88	0.36	0.59	1.00														
Cr	0.77	-0.69	-0.14	-0.92	0.62	0.78	0.82	1.00													
Cu	0.51	-0.41	0.18	-0.79	0.37	0.47	0.82	0.87	1.00												
Fe	-0.25	0.38	0.80	-0.32	-0.38	-0.16	0.46	0.34	0.54	1.00											
Mn	-0.03	0.16	0.72	-0.51	-0.16	-0.01	0.67	0.51	0.77	0.90	1.00										
Ni	0.79	-0.68	-0.16	-0.89	0.64	0.73	0.75	0.93	0.76	0.29	0.43	1.00									
Pb	0.63	-0.53	-0.02	-0.81	0.42	0.68	0.70	0.90	0.76	0.46	0.52	0.93	1.00								
Zn	0.84	-0.74	-0.27	-0.84	0.70	0.73	0.65	0.88	0.70	0.18	0.33	0.98	0.88	1.00							
Al	0.77	-0.71	-0.23	-0.92	0.64	0.86	0.80	0.94	0.75	0.26	0.40	0.88	0.87	0.82	1.00						
As	-0.29	0.40	0.73	-0.22	-0.37	-0.21	0.35	0.30	0.46	0.95	0.82	0.20	0.35	0.10	0.20	1.00					
Ba	0.45	-0.42	-0.12	-0.51	0.35	0.46	0.61	0.55	0.65	0.02	0.29	0.40	0.36	0.38	0.44	-0.08	1.00				
Co	0.68	-0.55	0.04	-0.89	0.52	0.62	0.80	0.92	0.87	0.47	0.62	0.97	0.93	0.94	0.84	0.36	0.24	1.00			
Cs	0.58	-0.52	-0.09	-0.84	0.57	0.65	0.82	0.73	0.60	0.21	0.39	0.67	0.57	0.59	0.83	0.17	0.41	0.64	1.00		
Eu	0.42	-0.35	-0.08	-0.50	0.28	0.48	0.44	0.55	0.47	0.22	0.22	0.67	0.73	0.66	0.54	0.02	0.45	0.67	0.23	1.00	
Hf	-0.10	0.09	0.15	0.17	0.06	-0.42	-0.19	-0.25	-0.03	-0.18	0.04	-0.34	-0.46	-0.32	-0.35	-0.15	-0.30	-0.27	-0.07	-0.58	1.00
Mg	0.83	-0.78	-0.31	-0.93	0.72	0.89	0.82	0.93	0.76	0.13	0.33	0.87	0.81	0.82	0.98	0.07	0.85	0.82	0.84	0.53	-0.29
Sb	-0.35	0.46	0.63	-0.11	-0.33	-0.28	0.11	0.03	0.03	0.73	0.45	0.09	0.23	0.01	0.06	0.71		0.17	0.14	0.17	-0.22
Rb	0.53	-0.50	-0.14	-0.64	0.47	0.54	0.70	0.67	0.73	0.06	0.34	0.61	0.56	0.55	0.72	-0.02	0.62	0.62	0.74	0.41	-0.03
Sc	0.81	-0.74	-0.21	-0.96	0.69	0.84	0.82	0.96	0.79	0.25	0.42	0.91	0.88	0.86	0.99	0.18	0.66	0.88	0.82	0.56	-0.25
Sr	0.86	-0.81	-0.37	-0.92	0.75	0.92	0.79	0.92	0.69	0.09	0.27	0.88	0.82	0.84	0.98	0.03	0.87	0.81	0.83	0.53	-0.32
	0.45	-0.40	-0.07	-0.69	0.34	0.64	0.82	0.70	0.70	0.26	0.41	0.63	0.62	0.55	0.77	0.20	0.68	0.63	0.75	0.47	-0.43
Th	0.81	-0.77	-0.35	-0.88	0.69	0.89	0.74	0.91	0.71	0.13	0.29	0.87	0.85	0.82	0.99	0.08	0.83	0.81	0.81	0.54	-0.35
U	0.42	-0.37	-0.02	-0.50	0.58	0.15	0.37	0.35	0.34	-0.05	0.17	0.31	0.11	0.28	0.33	-0.05	0.07	0.32	0.51	0.00	0.55
V	0.28	-0.20	0.18	-0.07	0.13	0.52	0.77	0.09	0.08	0.33	0.50	0.01	0.73	0.49	0.//	0.40	0.21	0.05	0.68	0.53	-0.52
<u> </u>	0.58	-0.50	0.11	-0.77	0.49	0.42	0.73	0.70	0.80	0.24	0.38	0.07	0.58	0.02	0.05	0.12	0.10	0.74	0.02	0.28	0.32
	0.91	-0.87	-0.44	-0.89	0.82	0.89	0.72	0.90	0.71	-0.03	0.22	0.83	0.75	0.81	0.93	-0.08	0.76	0.70	0.80	0.43	-0.10
NJ	0.79	-0.72	-0.16	-0.80	0.78	0.03	0.72	0.84	0./5	0.04	0.30	0.71	0.57	0.08	0.77	0.10	0.70	0.70	0.70	0.42	0.16
Sm	0.07	-0.01	-0.10	-0.70	0.02	0.32	0.39	0.07	0.00	0.04	0.33	0.72	0.03	0.71	0.70	-0.00	0.30	0.72	0.71	0.42	0.10
5 III Vh	0.00	-0.83	-0.42	-0.95	0.77	0.72	0.70	0.94	0.51	0.13	0.39	0.90	0.62	0.00	0.91	0.07	0.70	0.00	0.77	0.49	-0.04
In	0.00	-0.83	-0.42	-0.02	0.90	0.72	0.55	0.71	0.34	-0.12	0.12	0.73	0.53	0.75	0.74	-0.19	0.95	0.05	0.79	0.23	0.05

			Buf	falo Rive	r NIST SRM 8	5702		Inorganics	in Marine	Sed-NIST SR	RM 2702				PACS-2		
			Certified/Ret	ferenc Va	i 1	MGS Result	5	Certified/l	Referenc Va	և	MGS Res	sults	Certified/Refe	renc Value	es Mo	GS Result	ts
Element	Symbol	Units	Certified	Std	Ave.	Std	% Recovery	Certified	Std	Ave.	Std	% Recovery	Certified	Std	Ave. Sto	l	% Recovery
Sulfur	S	%			0.35	5 0.010)	1.:	5	1.5375	0.043	102.50	1.29	0.13	3 1.2425	0.062	96.32
Phosphorus	Р	%			0.090	5 0.003	3	0.1552	2 0.00	5 0.14125	0.003	91.01	0.096	0.004	4 0.09425	0.004	98.18
Cadmium	Cd	ppm	2.94	0.29	-	3 0.115	5 102.04	0.81	7 0.01	0.95	0.058	116.28	2.11	0.15	5 2.225	0.150	105.45
Chromium	Cr	ppm	121.9	3.8	12) 5.888	8 98.44	352	2 2	2 332.5	20.158	94.46	90.7	4.6	5 91.5	3.697	100.88
Copper	Cu	ppm			84.:	5 2.640	5	117.3	7 5.	5 110.5	4.933	93.88	310	12	2 303.5	15.674	97.90
Iron	Fe	%	3.97	0.1	3.957	5 0.100) 99.69	7.9	0.2	4 7.3775	0.176	93.27	4.09	0.06	5 4.0425	0.158	98.84
Manganese	Mn	ppm	544	21	57	9.620	5 106.25	1757	7 5	8 1692.5	74.106	96.33	440	19	9 441.5	25.173	100.34
Nickel	Ni	ppm	42.9	3.7	44	4 0.816	5 102.56	75.4	4 1.	5 76.5	1.000	101.46	39.5	2.3	3 41.25	1.893	104.43
Leand	Pb	ppm	150	17	141.2	5 6.02	94.17	132.8	3 1.	1 120.5	3.317	90.74	183	8	3 169.25	8.261	92.49
Zinc	Zn	ppm	408	15	383.	5 11.958	3 94.00	485.3	3 4.	2 445	15.033	91.70	364	23	3 355.5	10.661	97.66
Silver	Au	ppb											1.22	0.14	1		
Gold	Ag	ppm						0.622	2 0.07	3 0.975	0.050	156.75					
Molybdimum	Мо	ppm						10.8	3 1.	5 5.75	2.630	53.24	5.43	0.28	3 4.25	0.500	78.27
Aluminum	Al	%	6.1	0.18	6.15	5 0.288	3 100.90	8.4	0.2	2 7.6175	0.497	90.58	6.62	0.32	6.5975	0.316	99.66
Arsenic	As	ppm	17		2	2.309	9 123.53	45.3	31.	3 57.25	3.948	126.38	26.2	1.5	5 36	6.683	137.40
Barium	Ba	ppm	413	13	422.:	5 95.350) 102.30	397.4	4 3.	2 460		115.75					
Beryllium	Be	ppm						3	3	3	0.000	100.00	1	0.2	2 1	0.000	100.00
Bismuth	Bi	ppm															
Bromine	Br	ppm															
Calcium	Ca	%	2.641	0.083	2.81	5 0.070) 106.59	0.343	3 0.02	4 0.335	0.030	97.67	1.96	0.18	3 2.125	0.104	108.42
Cobalt	Со	ppm	13.57	0.43	13.:	5 1.29	99.48	27.70	5 0.5	3 27.25	3.594	98.16	11.5	0.3	3 13.5	0.577	117.39
Cesium	Cs	ppm	5.83	0.12	4.:	5 0.57	7 77.19	7.	l								
Europium	Eu	ppm	1.31	0.038	1.	2 0.183	3 91.60										
Hafnium	Hf	ppm	8.4	1.5	7.2:	5 0.95	86.31	12.0	5	8.5	0.577	67.46					
Mercury	Hg	ppm						0.4474	4 0.006)			3.04	0.2	2		
Iridium	Ir_ppb	ppb															
Potassium	K	%	2.001	0.041	2.072	5 0.314	4 103.57	2.054	4 0.07	2 2.1725	0.126	105.77	1.24	0.05	5 1.23	0.243	99.19
Magnesium	Mg	%	1.2	0.018	1.157:	5 0.039	96.46	0.99	<i>∂</i> 0.07	4 0.91	0.018	91.92	1.47	0.13	3 1.38	0.076	93.88
Sodium	Na	%	0.553	0.015	0.597:	5 0.034	4 108.05	0.68	0.0	2 0.7625	0.086	5 111.97	3.45	0.17	3.29	0.109	95.36
Antimony	Sb	ppm	3.07	0.32	3.4	4 0.14	110.75	5.0	5 0.2	4 5.825	0.126	104.02	11.3	2.6	5 12.7	0.535	112.39
Rubidium	Rb	ppm						127.	7 8.	3							
Scandium	Sc	ppm	11.26	0.19	11.:	0.258	3 102.13	25.9) 1.	23.825	0.222	91.99					
Selenium	Se	ppm						4.95	5 0.4	5	0.505	01.00	0.92	0.22	2	10 675	07.00
Strontium	Sr	ppm						119.	/	3 110	9.592	91.90	276	30	268.5	13.675	97.28
Tantatum	Ta	ppm	0.457	0.00	0.42	0.00	02.00	0.00		0.74	0.110	02.71	0.442	0.020	0.445	0.024	100.45
Titanium	Ti m	%	0.457	0.02	0.42	0.024	4 93.00	0.884	+ 0.08	2 0.74	0.110	83./1	0.443	0.032	0.445	0.024	100.45
Inorium	In	ppm	9.07	0.16	9.17:	0.73	101.16	20.5	0.9	5 20.2	1.447	98.49	2				
Uranium	U	ppm	3.09	0.13	4.0.	0.11:	130.53	10.4	+ - 0	7.425	1.85/	95.42	3		1.21	C 401	
v anadium	V XX7	ppm	94.6	4				357.0) 9.)	2 305.5	49.770	85.45	155	-	5 151	0.481	
Tungsten Vttainm	VV V	ppm						0.4	2								
Y ttrium	Y Lo	ppm						72 4	- 4	724	5 102	00.96					
Corium	La	ppm	66 5	2	55 7	0.466	. 02.02	/3.) 4. 1 5	2 / 3.4	5.193	99.80					
Noodymium	Nd	ppm	00.5	2	35.7	9.403	00.83	123.4	+).	106.25	1/.014	01.12					
Somerium	inu Cm	ppm						20))	43.23	10.572	· 00.80					
Samarium	SM Sm	ppm						10.8	, 	9.625	0.050	90.97	10.9	2.4	-		
1 III Torbium	ЭП Th	70						51.0	, 2.	+			19.8	2.3	,		
Vttorbium	10 Vb	ppm															
I utotium	10	ppm															
Lutetium	Lu	ppm															

Table F-5. Quality Assurance / Quality Control Values from elemental analysis. Results are from 16 reference samples submitted as blind unknowns and were run with the samples from this study.

Appendix G

Core Physical Properties

	RESULTS						
Sample ID	%H20 Bulk	C Density %G	RAVEL	%SAND	%SILT	%CLAY SHEPCLASS	FOLK'S CLASS
Core 2 0-29cm	73.50	1.20	0.00	14.41	37.38	48.21 Silty-Clay	
Core 2 80-92cm	22.14	1.97	0.00	60.67	28.96	10.37 Silty-Sand	
Core 2 116-124cm	15.88	2.14	19.33	68.17	8.38	4.13	gravelly muddy Sand
Core 3 0-12cm	65.11	1.28	0.00	34.86	27.28	37.87 Sand-Silt-Clay	
Core 3 12-20cm	26.00	1.88	41.49	53.11	2.79	2.61	sandy Gravel
Core 3 20-54cm	52.99	1.42	0.00	3.94	45.33	50.73 Silty-Clay	
Core 3 54-56cm	52.77	1.43	0.00	38.59	40.53	20.88 Sand-Silt-Clay	
Core 3 56-71cm	35.42	1.69	0.00	42.34	36.41	21.25 Sand-Silt-Clay	
Core 3 71-80cm	22.63	1.96	0.00	69.68	21.42	8.89 Silty-Sand	
Core 3 80-93cm	31.73	1.76	0.00	72.33	18.61	9.06 Silty-Sand	
Core 3 93-112cm	17.47	2.09	29.96	56.45	8.46	5.12	gravelly muddy Sand
Core 3 112-154.5cm	9.77	2.33	38.62	38.14	13.91	9.33	muddy sandy Gravel
Core 4 0-12cm	68.29	1.25	0.00	3.98	40.99	55.04 Silty-Clay	
Core 4 12-16cm	51.48	1.44	0.00	17.01	32.39	50.60 Silty-Clay	
Core 4 16-34cm	26.59	1.87	0.00	50.69	22.81	26.50 Sand-Silt-Clay	
Core 4 34-54cm	20.34	2.02	0.00	61.17	23.26	15.57 Silty-Sand	
Core 4 54-67cm	20.11	2.02	5.04	61.19	20.30	13.47	gravelly muddy Sand
Core 4 67-82.5cm	12.71	2.23	21.63	48.30	17.66	12.41	gravelly muddy Sand
Core 5 0-30cm	74.50	1.19	0.00	1.58	43.08	55.33 Silty-Clay	
Core 5 30-62cm	56.85	1.38	0.00	0.89	44.06	55.05 Silty-Clay	
Core 5 62-76cm	41.88	1.58	0.00	46.83	33.48	19.69 Silty-Sand	
Core 5 76-89cm	25.18	1.90	0.00	65.88	22.40	11.72 Silty-Sand	
Core 6 0-16cm	74.21	1.19	0.00	3.67	42.82	53.51 Silty-Clay	
Core 6 16-44cm	61.33	1.32	0.00	3.15	39.19	57.66 Silty-Clay	
Core 6 44-48cm	63.45	1.30	0.00	2.02	39.39	58.60 Silty-Clay	
Core 6 48-62cm	61.02	1.33	0.00	4.25	38.04	57.71 Silty-Clay	
Core 6 62-74cm	56.32	1.38	0.00	64.89	17.66	17.45 Silty-Sand	
Core 6 74-84cm	16.64	2.11	7.55	19.25	59.84	13.36	gravelly muddy Sand
Core 8 0-16cm	63.17	1.30	0.00	12.47	39.20	48.33 Silty-Clay	
Core 8 16-44cm	49.03	1.48	0.00	27.24	41.06	31.71 Sand-Silt-Clay	
Core 8 44-56cm	19.73	2.03	0.00	86.47	9.57	3.96 Sand	
Core 8 56-81cm	31.28	1.77	0.00	74.10	17.55	8.34 Silty-Sand	
Core 8 81-83cm	40.91	1.60	0.00	82.42	10.35	7.23 Sand	
Core 8 83-92cm	35.85	1.68	0.00	83.40	11.53	5.07 Sand	
Core 8 92-100cm	23.98	1.93	0.00	91.06	6.40	2.54 Sand	
Core 13 0-22cm	72.61	1.21	0.0	4.88	60.54	34.58 Clayey-Silt	
Core 13 22-40cm	52.11	1.43	0.00	17.50	48.72	33.78 Clayey-Silt	
Core 13 40-56cm	21.33	1.99	0.00	44.08	36.46	19.47 Silty-Sand	
Core 13 56-102cm	21.16	1.99	0.00	80.55	13.61	5.84 Sand	
Core 13 102-109.5cm	22.23	1.97	0.00	89.76	6.69	3.55 Sand	
Core 16 0-13cm	7.43	2.41	60.87	30.80	6.65	1.68	muddy sandy Gravel
Core 16 13-43cm	5.74	2.48	49.15	41.44	6.12	3.29	muddy sandy Gravel

 Table G-1. Physical properties of the collected core samples. Shephard's classification is used for samples without a gravel component. Folk's classification is used for samples with gravel.

Appendix H

Analysis of Cores 9, 11, and 15

Further analysis of the sediments was desired after the initial results were reported. Three cores were identified for further analysis due to their spatial location, existing data, and depth. Cores 9, 11, and 15, were analyzed for textural properties by MGS and for 48 elements by Actlabs. These cores were collected along the three up-stream transects in the Lake (Figure A-1).

STUDY OBJECTIVES

The objectives for this follow-on study were:

- 1) Further document physical and elemental characteristics of the sediment.
- 2) Identify any possible trends in the historical core sediments.

METHODOLOGY

Methods and interpreted analyses of the results are the same as those used for the first set of samples.

RESULTS AND DISCUSSION

Analytical results are presented in Table H-2. Results of the Standard reference material (SRM) used for QA/QC are listed in Table H-3.

The cores penetrated sediments ranging from silts and clays at the top of the sediment column to coarse sand and gravel at depth (Table H-2). Because of the significant downcore changes in the textural character of the sediments, assessing any changes in chemistry in the sediment column was difficult even when using enrichment factors to normalize the elemental data.

Generally, the elemental analyses for the cores 9, 11, and 15 yielded concentrations similar to those reported for Core 4. However, the iron concentration reported for at least one sample from each core was less than 1% which was unexpected given that these iron-poor samples contained some silts and clays which usually are iron-rich. Enrichment factors using Fe as the normalizing element would be relatively high for other elements due to the low iron in these samples.
	Mean EF	using		Mean E	F using
Element	Al	Fe	Element	Al	Fe
Р	0.49	0.70	Mg	0.22	0.36
Cr	1.14	1.91	Rb	1.42	2.35
Cu	0.69	1.03	Sb	8.46	13.70
Fe	0.71		Sc	0.74	1.24
Mn	0.29	0.44	Sr	0.28	0.47
Ni	0.70	1.14	Ti	0.97	1.54
Pb	2.74	4.55	Th	2.30	3.96
Zn	2.18	3.48	U	3.27	5.77
Al		1.71	V	0.68	1.04
As	9.74	16.25	Y	1.43	2.64
As- adjusted*	7.79	13.00	La	2.07	3.53
Ba	1.46	2.43	Ce	1.96	3.34
Со	0.92	1.49	Nd	2.02	3.45
Cs	1.93	3.23	Sm	1.67	2.89
Eu	2.30	4.01	Yb	2.22	3.94
Hf	8.53	15.59	Lu	2.17	3.86
* Arsenic conce	entrations w	vere adjuste	ed by multip	lying repo	orted
concentration b	y 0.8 to cor	rect for 12	5% recovery	rate for r	eported by
Actlabs.					

Table H-1. Comparison of average EF values using Fe and Al, respectively for sediments analyzed in Cores 9, 11, and 15.

Enrichment factors calculated using Fe and Al were similar to those reported for first set of samples (Tables 2 and H-1). Elements having significantly high enrichment (i.e., >2 for both Fe and Al based EF values) include arsenic (As), lead (Pb), antimony (Sb), thorium (Th), uranium (U), zinc (Zn), lanthanumn (La) and neodymium (Nd). Except for Pb and Zn, most elements do not show any downcore trend in enrichment. The high enrichment may reflect a natural regional abundance of the elements as they do not exhibit any significant downcore change. EFs tended to be higher in Core 15 which was collected in the upstream end of New Germany Lake and may have contained a higher percentage of unweathered parent rock.

Figures H-1 and H-2 show plots of the EF profiles for lead (Pb) and zinc (Zn) for Cores 9 and 11, respectively. Although the EFs were calculated using aluminum instead of iron, the downcore trends, particularly Zn, are similar to those for Core 4 (Figure 4). Plots suggest that sediments deeper than 21 cm [0.75 ft] in Core 9 and deeper than 33 cm [1 ft] in Core 11 are older than the early 1900s.

Plots of EF for Zn and Pb for Core 15 present a different picture (Figure H-3). EFs for both Zn and Pb do not show clear downcore trends. Core 15 was collected on the delta deposits at the upstream end of the lake. The delta area represents a higher energy deposition environment, subjected to storms and high flow events which would disturb and rework the sediments.

Figure H-1 . Plot of EF (normalized using Al) for Zn and PB in core 9.

Figure H-2. Plots of EF (normalized using Al) for Zn and PB in core 11.

Figure H-3. Plot of EF (nomalized using Al) for Zn and PB in core 15.

Sample ID and interval	%H20	Bulk Density	%Gravel	%Sand	%Silt	%Clay	Shepard's Class	Folk's Class
Core 9 0-21cm	61.85	1.32	0.00	3.97	38.76	57.27	Silty-Clay	
Core 9 21-59cm	49.86	1.46	0.00	26.81	30.72	42.48	Sand-Silt-Clay	
Core 9 59-69cm	24.16	1.92	1.24	87.12	7.99	3.65		Slightly Gravelly Muddy Sand
Core 9 69-81cm	12.87	2.23	41.08	48.55	6.90	3.47		Muddy Sandy Gravel
Core 9 81-97cm	16.36	2.12	13.07	45.20	25.25	16.48		Gravelly Muddy Sand
Core 11 0-26cm	69.59	1.24	0.00	13.16	39.16	47.68	Silty-Clay	
Core 11 26-33cm	66.79	1.27	0.00	23.66	36.47	39.87	Sand-Silt-Clay	
Core 11 33-57cm	25.58	1.89	0.00	46.84	35.48	17.68	Silty-Sand	
Core 11 57-116cm	19.35	2.04	0.00	48.00	32.62	19.38	Silty-Sand	
Core 11 116-149cm	19.59	2.03	0.33	58.83	26.61	14.23		Slightly Gravelly Muddy Sand
Core 11 149-172cm	24.70	1.91	8.81	58.68	20.75	11.77		Gravelly Muddy Sand
Core 15 0-34cm	74.61	1.19	0.00	8.60	56.70	34.71	Clayey-Silt	
Core 15 34-100cm	29.88	1.80	0.00	29.65	48.23	22.11	Sand-Silt-Clay	
Core 15 100-107cm	28.91	1.82	0.00	79.05	13.08	7.86	Sand	
Core 15 107-126cm	15.13	2.16	50.19	34.51	9.90	5.40		Muddy Sandy Gravel
Core 15 126-142cm	10.11	2.32	49.22	35.87	10.02	4.88		Muddy Sandy Gravel
Core 15 142-145cm	9.85	2.33	32.44	47.71	8.25	11.60		Muddy Sandy Gravel

 Table H-2 -. Results from textural and elemental analysis of samples from cores 9, 11 and 15.

	Au	Ag	Cu	Cd	Мо	Pb	Ni	Zn	S	Al	As	Ba	Be	Bi	Br	Ca
Sample ID	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	%
Detection limit	2	0.3	1	0.3	1	3	1	1	0.01	0.01	0.5	50	1	2	0.5	0.01
Core 9 0-21cm	< 2	< 0.3	26	2	2	44	51	248	0.14	7.06	13.2	650	4	< 2	8	0.16
Core 9 21-59cm	< 2	< 0.3	20	0.5	< 1	18	29	86	0.06	5.58	7.4	410	2	< 2	5.3	0.14
Core 9 59-69cm	< 2	< 0.3	3	< 0.3	< 1	7	6	20	0.01	1.36	2.6	130	< 1	< 2	1.2	0.05
Core 9 69-81cm	< 2	< 0.3	9	< 0.3	< 1	11	15	37	0.01	2.72	3.8	240	1	< 2	< 0.5	0.05
Core 9 81-97cm	< 2	0.3	10	0.6	< 1	12	21	41	0.03	4.02	4.5	220	2	< 2	1	0.16
Core 11 0-26cm	< 2	0.4	38	2.1	1	35	57	268	0.23	6.17	10.9	470	4	< 2	9.5	0.2
Core 11 26-33cm	< 2	0.3	18	0.5	< 1	13	26	65	0.13	4.57	6.6	340	2	< 2	4.1	0.43
Core 11 33-57cm	< 2	< 0.3	13	< 0.3	< 1	13	15	38	<	3.65	4.6	230	2	< 2	1.3	0.13
									0.01							
Core 11 57-	< 2	< 0.3	7	< 0.3	< 1	12	16	42	<	3.18	4	260	1	< 2	0.9	0.12
116cm									0.01							
Core 11 116-	< 2	0.3	8	< 0.3	< 1	11	14	43	0.01	3.34	3.2	270	1	< 2	0.8	0.14
149cm																
Core 11 149-	< 2	< 0.3	16	0.4	< 1	15	23	63	0.07	3.77	6.5	270	2	< 2	< 0.5	0.18
172cm																
Core 15 0-34cm	< 2	< 0.3	18	1.6	2	27	43	153	0.2	5.61	9.1	510	3	< 2	10.7	0.22
Core 15 34-	< 2	0.4	15	0.5	< 1	16	27	62	0.05	4.42	7.7	270	2	< 2	2.1	0.18
100cm																
Core 15 100-	< 2	0.3	13	< 0.3	< 1	9	21	43	0.22	2.34	12	140	1	< 2	1.6	0.1
107cm																
Core 15 107-	< 2	0.4	23	0.3	< 1	20	34	79	0.13	4.49	23.4	200	2	< 2	< 0.5	0.08
126cm																
Core 15 126-	< 2	< 0.3	71	0.6	< 1	18	25	67	0.04	4.34	12.4	220	2	< 2	< 0.5	0.06
142cm																
Core 15 142-	< 2	0.4	19	0.9	< 1	14	27	60	0.02	2.7	9.8	320	2	< 2	< 0.5	0.06
145cm																

 Table H-2 –(cont.). Results from textural and elemental analysis of samples from cores 9, 11 and 15.

	Со	Cr	Cs	Eu	Fe	Hf	Hg	Ir	K	Mg	Mn	Na	Р	Rb	Sb	Sc
Sample ID	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	%	%	ppm	%	%	ppm	ppm	ppm
Detection limit	1	2	1	0.2	0.01	1	1	5	0.01	0.01	1	0.01	0.001	15	0.1	0.1
Core 9 0-21cm	24	88	5	1.6	3.93	9	< 1	< 5	2.36	0.47	351	0.15	0.067	123	1.4	13.5
Core 9 21-59cm	11	57	4	1.2	2.17	10	< 1	< 5	1.64	0.35	220	0.12	0.036	72	0.7	9.1
Core 9 59-69cm	3	21	1	0.6	0.42	12	< 1	< 5	0.39	0.07	32	0.02	0.003	23	0.3	2.4
Core 9 69-81cm	4	35	2	1.3	1.46	12	< 1	< 5	1.13	0.12	34	0.04	0.02	40	0.7	4.9
Core 9 81-97cm	7	40	2	1.1	2.89	7	< 1	< 5	1.46	0.22	67	0.08	0.013	54	0.9	6.5
Core 11 0-26cm	22	76	5	1.5	3.65	9	< 1	< 5	2.05	0.42	347	0.13	0.063	107	0.9	11.5
Core 11 26-33cm	7	57	4	1.3	2.14	9	< 1	< 5	1.38	0.29	357	0.09	0.04	81	0.7	8.6
Core 11 33-57cm	5	48	3	1.3	1.14	14	< 1	< 5	0.95	0.19	92	0.08	0.013	48	0.5	6.8
Core 11 57-116cm	7	54	3	1.3	1.21	13	< 1	< 5	1.07	0.19	82	0.09	0.011	57	0.7	7.6
Core 11 116-149cm	6	48	2	1.2	0.8	12	< 1	< 5	0.94	0.18	66	0.07	0.008	46	0.5	6.5
Core 11 149-172cm	11	56	2	1.4	1.36	10	< 1	< 5	1.34	0.27	123	0.09	0.014	51	0.9	7.6
Core 15 0-34cm	18	66	5	1.3	2.48	9	< 1	< 5	1.69	0.32	234	0.11	0.079	94	0.8	10.4
Core 15 34-100cm	8	59	3	1.6	0.89	13	< 1	< 5	1.48	0.27	70	0.1	0.012	57	0.7	8.8
Core 15 100-107cm	12	29	1	1	0.73	9	< 1	< 5	0.7	0.13	28	0.04	0.009	35	0.6	4.5
Core 15 107-126cm	23	61	2	1.2	1.67	11	< 1	< 5	1.7	0.31	68	0.09	0.017	63	1.2	8.2
Core 15 126-142cm	12	60	2	1.2	3.74	10	< 1	< 5	1.58	0.27	284	0.06	0.035	57	1	7.7
Core 15 142-145cm	14	66	3	1.3	3.37	11	< 1	< 5	1.8	0.27	114	0.1	0.033	63	1	10

 Table H-2 –(cont.). Results from textural and elemental analysis of samples from cores 9, 11 and 15.

	Se	Sr	Та	Ti	Th	U	V	W	Y	La	Ce	Nd	Sm	Sn	Tb	Yb	Lu
Sample ID	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Detection limit	3	1	0.5	0.01	0.2	0.5	2	1	1	0.5	3	5	0.1	0.01	0.5	0.2	0.05
Core 9 0-21cm	< 3	92	1.8	0.35	14.8	4.3	85	< 1	25	41.8	79	38	6	< 0.01	< 0.5	3.8	0.57
Core 9 21-59cm	< 3	66	< 0.5	0.14	10.7	4.3	39	< 1	23	30.5	55	23	4.5	< 0.01	< 0.5	3.2	0.45
Core 9 59-69cm	4	17	< 0.5	0.13	4.9	2.5	12	< 1	16	14.4	27	12	2.2	< 0.01	< 0.5	1.9	0.28
Core 9 69-81cm	< 3	61	< 0.5	0.22	7.6	3.4	37	< 1	17	30.2	60	34	5.1	< 0.01	< 0.5	2.3	0.35
Core 9 81-97cm	< 3	44	< 0.5	0.23	8.8	3	52	< 1	23	23.3	46	19	4	< 0.01	< 0.5	2.6	0.39
Core 11 0-26cm	< 3	84	< 0.5	0.37	13.1	5	72	< 1	26	36.4	66	38	5.6	< 0.01	< 0.5	3.2	0.49
Core 11 26-33cm	< 3	62	< 0.5	0.41	10	4.4	66	< 1	22	28.3	55	18	4.3	< 0.01	< 0.5	2.7	0.43
Core 11 33-57cm	4	45	0.7	0.11	10.5	5.1	14	< 1	23	29.5	54	29	4.7	< 0.01	< 0.5	3.3	0.49
Core 11 57-	< 3	39	< 0.5	0.38	10.9	4	51	< 1	19	29.6	55	23	4.6	< 0.01	0.9	3.2	0.51
116cm																	
Core 11 116-	< 3	39	< 0.5	0.14	9.3	3.8	18	< 1	22	25.4	48	22	4.3	< 0.01	0.8	3.1	0.54
149cm	< 3	15	< 0.5	0.2	10	4	40	< 1	26	27.4	50	25	4.0	< 0.01	< 0.5	2	0.55
172cm	< 5	43	< 0.5	0.2	10	4	40	< 1	20	27.4	52	23	4.9	< 0.01	< 0.5	3	0.55
Core 15 0-34cm	< 3	68	< 0.5	0.39	11.3	4.5	66	< 1	24	32.5	63	26	5.1	< 0.01	< 0.5	3.3	0.55
Core 15 34-	< 3	52	< 0.5	0.18	12.2	4.4	35	< 1	29	31.4	59	29	5.6	< 0.01	1.1	4.1	0.72
100cm																	
Core 15 100-	< 3	25	< 0.5	0.18	6.9	2.9	21	< 1	19	19	37	23	3.4	< 0.01	< 0.5	2.2	0.38
107cm																	
Core 15 107-	< 3	47	< 0.5	0.26	11.3	4.6	52	< 1	21	26.5	49	23	4.3	< 0.01	< 0.5	3.1	0.5
126cm	2	16	0.0	0.16	10.1		20		01	25.6	50		1.0	0.01	0.5	0.7	0.54
Core 15 126-	< 3	46	0.9	0.16	10.1	4.4	38	< 1	21	25.6	52	23	4.2	< 0.01	< 0.5	2.7	0.54
142Cm Coro 15, 142	< 3	38	< 0.5	0.44	12	3.6	60	< 1	Q	32.0	61	31	5.1	< 0.01	< 0.5	33	0.50
145cm	< 5	30	< 0.5	0.44	12	5.0	09	< 1	0	32.9	01	51	5.1	< 0.01	< 0.5	5.5	0.39
145011																	

 Table H-2 –(cont.). Results from textural and elemental analysis of samples from cores 9, 11 and 15.

	NIST SRM 1646a- Estuarine Sediment													
			Certified/Refere	enced values	Actlab Results									
Element	Symbol	Units	Certified values	Std dev	Ave	Std dev	Detection limit	% Recovery						
Gold	Au	ppb					2							
Silver	Ag	ppm			0.6		0.3							
Copper	Cu	ppm	10.01	0.34	10.33	0.58	1	103.2						
Cadmium	Cd	ppm	0.148	0.007	0.450	0.071	0.3	304.1						
Molybdimum	Mo	ppm	1.8		2	0	1	111.1						
Lead	Pb	ppm	11.7	1.2	10	1	3	85.5						
Nickel	Ni	ppm	23		25	2	1	108.7						
Zinc	Zn	ppm	48.9	1.6	49	3	1	100.2						
Sulfur	S	%	0.352	0.004	0.377	0.021	0.01	107.0						
Aluminum	Al	%	2.297	0.018	2.043	0.652	0.01	89.0						
Arsenic	As	ppm	6.23	0.21	8.03	0.40	0.5	128.9						
Barium	Ba	ppm	210		200	17	50	95.2						
Bervllium	Be	ppm			1	0	1							
Bismuth	Bi	ppm					2							
Bromine	Br	ppm			40.967	0.7371	0.5							
Calcium	Ca	%	0.519	0.02	0.547	0.110	0.01	105.3						
Cobalt	Со	ppm	5		5.67	0.58	1	113.3						
Chromium	Cr	ppm	40.9	1.9	50	2.6458	2	122.2						
Cesjum	Cs	ppm	1012		1		- 1							
Europium	Eu	ppm			0.7333	0.2082	0.2							
Iron	Fe	%	2,008	0.039	1.94	0.04	0.01	96.6						
Hafnium	Hf	ppm	2.000		13	0	1	2010						
Potassium	K	%	0.864	0.016	1.107	0.081	0.01	128.1						

 Table H-3.
 Quality Assurance / Quality Control Values from elemental analysis. Results are from 3 samples of NIST SRM 1646a, submitted as blind unknowns and were run with the second set of samples.

	NIST SRM 1646a- Estuarine Sediment													
			Certified/Refe	renced values	Actlab Results									
Element	Symbol	Units	Certified values	Std dev	Ave	Std dev	Detection limit	% Recovery						
Magnesium	Mg	%	0.388	0.009	0.417	0.049	0.01	107.4						
Manganese	Mn	ppm	234.5	2.8	243.7	16.6	1	103.9						
Sodium	Na	%	0.741	0.017	0.677	0.006	0.01	91.3						
Phosphorus	Р	%	0.027	0.001	0.030	0.001	0.001	111.1						
Rubidium	Rb	ppm	38		35.5	2.1213	15	93.4						
Antimony	Sb	ppm	0.3		0.3	0.1414	0.1	100.0						
Scandium	Sc	ppm	5		4.8	0.1	0.1	96.0						
Selenium	Se	ppm	0.193	0.028			3							
Strontium	Sr	ppm	68		69.3	13.3	1	102.0						
Titanium	Ti	%	0.456	0.021	0.457	0.101	0.01	100.1						
Thorium	Th	ppm	5.8		6.9333	0.1155	0.2	119.5						
Uranium	U	ppm	2		2.5	0.6557	0.5	125.0						
Vanadium	v	ppm	44.84	0.76	37.33	10.02	2	83.3						
Tungsten	W	ppm					1							
Yttrium	Y	ppm			9.3333	2.8868	1							
Lanthanum	La	ppm	17		18.7	0.3464	0.5	110.0						
Cerium	Ce	ppm	34		36	2.6458	3	105.9						
Neodymium	Nd	ppm	15		18	2	5	117.8						
Samarium	Sm	ppm			3	0	0.1							
Tin	Sn	%	1				0.01							
Terbium	Tb	ppm					0.5							
Ytterbium	Yb	ppm			1.6	0.1	0.2							
Lutetium	Lu	ppm			0.22	0.01	0.05							