Department of Natural Resources Resource Assessment Service MARYLAND GEOLOGICAL SURVEY Emery T. Cleaves, Director

# **OPEN-FILE REPORT NO. 99-02-10**

# PILOT STUDY OF CARCINOGENS IN WELL WATER IN ANNE ARUNDEL COUNTY, MARYLAND

by

David W. Bolton Maryland Geological Survey

and

Martha A. Hayes U.S. Geological Survey



Prepared in cooperation with The Anne Arundel County Advisory Task Force on Cancer Control The Anne Arundel County Health Department The United States Department of the Interior Geological Survey and The U.S. Environmental Protection Agency

# COMMISSION OF THE MARYLAND GEOLOGICAL SURVEY

M. GORDON WOLMAN, CHAIRMAN F. PIERCE LINAWEAVER ROBERT W. RIDKY JAMES B. STRIBLING

# CONTENTS

|                                                                              | Page |
|------------------------------------------------------------------------------|------|
| Executive summary                                                            | 1    |
| Background                                                                   |      |
| Summary of key findings                                                      |      |
| Introduction                                                                 | 3    |
| Purpose and scope                                                            | 3    |
| Acknowledgments                                                              | 3    |
| Well-numbering system                                                        | 4    |
| Hydrogeologic setting                                                        | 4    |
| Study design                                                                 | 4    |
| Well selection                                                               | 4    |
| Chemical constituents                                                        | 8    |
| Sampling methods                                                             | 9    |
| Analytical methods                                                           | 10   |
| Quality assurance                                                            | 10   |
| Water quality                                                                | 11   |
| Inorganic water quality                                                      |      |
| Synthetic organic compounds                                                  | 21   |
| Volatile organic compounds                                                   |      |
| Atrazine and metolachlor                                                     |      |
| Radionuclides                                                                |      |
| Radium-226, radium-228, and gross alpha- and gross beta-particle             |      |
| activity                                                                     | 22   |
| Radium-224 and short-term gross alpha-particle activity                      |      |
| Radon                                                                        |      |
| Uranium                                                                      | 31   |
| Bacteria                                                                     | 31   |
| Water-quality data in relation to cancer groups                              | 31   |
| Summary and conclusions                                                      |      |
| References                                                                   |      |
| Appendixes                                                                   |      |
| A. Water-quality data from wells sampled in this study                       |      |
| B. Well-construction and well-location data from wells sampled in this study |      |
| C1. Chemical and bacteriological constituents analyzed in this study         |      |
| C2. Sample container designations, container descriptions, and sample        |      |
| preservation and treatment                                                   | 54   |
| D. Summary of quality-assurance sample data                                  |      |
|                                                                              |      |

ł

(dir.

# **FIGURES**

**)** 

**م**م ۱

ا ليو.

<u>ايت</u>

đη

, |

Γ.

•

|                                                                                 | Page |
|---------------------------------------------------------------------------------|------|
| Figure 1. Map of Anne Arundel County showing well locations and areas served by |      |
| public water supplies                                                           | 5    |
| 2. Map showing generalized outcrop areas of geologic formations in              |      |
| Anne Arundel County                                                             | 6    |
| 3. Generalized geologic section across Anne Arundel County                      |      |
| 4. Map showing Stiff diagrams of selected wells in the Patapsco,                |      |
| Magothy, and Aquia Formations in Anne Arundel County                            | 19   |
| 5. Uranium-238 and thorium-232 radioactive decay series                         | 23   |
| 6. Distribution of radium-226 in well water in Anne Arundel County              |      |
| 7. Distribution of radium-228 in well water in Anne Arundel County              |      |
| 8. Relationship between gross alpha-particle activity and radium-226            |      |
| concentration                                                                   | 26   |
| 9. Relationship between gross beta-particle activity and radium-228             |      |
| concentration                                                                   | 26   |
| 10. Relationship between radium-226 plus radium-228 and pH                      |      |
| 11. Relationship between radium-226 plus radium-228 and                         |      |
| specific conductance                                                            | 27   |
| 12. Distribution of radon in well water in Anne Arundel County                  |      |

# TABLES

|       |    | Page                                                              |
|-------|----|-------------------------------------------------------------------|
| Table | 1. | Summary of targeted areas for the Anne Arundel County pilot study |
|       |    | of well-water quality                                             |
|       | 2. | Summary of well depths from the Anne Arundel County pilot study   |
|       |    | in relation to aquifers and targeted areas                        |
|       | 3. | Summary of pilot study water-quality data in relation to aquifers |
|       |    | and targeted areas                                                |
|       | 4. | Short-term and long-term gross alpha-particle activity and radium |
|       |    | concentrations from Phase 2 sampling, and comparison to radium    |
|       |    | concentrations from Phase 1 sampling                              |
|       | 5. | Summary of chemical constituents in cancer groups A, B2, and C    |

# PILOT STUDY OF CARCINOGENS IN WELL WATER IN ANNE ARUNDEL COUNTY, MARYLAND

by

David W. Bolton and Martha A. Hayes

#### **EXECUTIVE SUMMARY**

#### BACKGROUND

A pilot study of carcinogens in domestic well water in Anne Arundel County was conducted by the Maryland Geological Survey (MGS) in cooperation with the U.S. Geological Survey (USGS), the U.S. Environmental Protection Agency (USEPA), the Anne Arundel County Health Department (AAHD), and the Anne Arundel County Department of Public Works. This study resulted from the recommendation of the Environmental Risks Subcommittee of the Anne Arundel County Advisory Task Force on Cancer Control.

Untreated water samples were collected from wells in areas where ground water is potentially at risk for the presence of carcinogens. Three areas were targeted: (1) areas of commercial and industrial land use or high-density residential development that are located in the general outcrop areas of the Patapsco, Magothy, and Aquia Formations, where well water may be susceptible to contamination by volatile organic compounds (VOCs) (referred to as VOC-targeted areas); (2) areas near current and former cropland in the general outcrop areas of the Patapsco, Magothy, and Aquia Formations, where well water may be susceptible to contamination by pesticides ("pesticide-targeted areas"); and (3) areas throughout Anne Arundel County (particularly in the Aquia Formation in southern part of the county), where few data were available on radon and other naturally occurring radionuclides and trace elements that may be dissolved in the water ("radon-targeted areas"). Areas potentially at risk were identified by use of a Geographic Information Systems (GIS) approach, which employed land-use and other digital coverages to generate maps of the targeted areas. Prioritized areas were visited to verify land use, interview residents about their wells, and obtain permission to sample. Because of the targeted selection process, the data from the study are not considered representative of all domestic wells in the county.

Untreated ("raw water") samples were collected from 47 wells (20 wells in each of the VOC- and pesticide-targeted areas and 7 wells in the radon-targeted area). Samples were collected from September through December 1997, and were analyzed for major ions (including iron, manganese, nitrate, and ammonia), the herbicides atrazine and metolachlor, radionuclides (uranium, radium-226, radium-228, radon, gross alpha- and gross beta-particle activity), arsenic, beryllium, lead, *E. coli*, total coliform bacteria, and a suite of volatile organic compounds. Because the radium concentrations from most of the wells from the Magothy and Patapsco Formations exceeded federal drinking water standards, resampling of selected wells took place in March 1998; samples were analyzed for radium-226, radium-228, radium-224 and short-term (measured within 3 days of sampling) and long-term (measured at about 30 days) gross alpha- and gross beta-particle activity.

# SUMMARY OF KEY FINDINGS

- Radium-226 plus radium-228 concentrations exceeded the Maximum Contaminant Level (MCL) of 5 picocuries per liter (pCi/L) in 15 of 20 wells in the Magothy and Patapsco Formations in central and northern Anne Arundel County. The high radium values, which are believed to be from natural sources, were closely associated with acidic ground water (pH values less than 5.0); the highest radium-226 plus radium-228 concentrations (66 pCi/L) were in acidic water with relatively high (greater than 450 milligrams per liter, or mg/L) total dissolved-solids (TDS) content. Six samples exceeded the MCL of 15 pCi/L for gross alpha-particle activity, which reflects the high radium levels in the samples. Radon concentrations were all below 1,000 pCi/L, and tended to be higher in samples from wells in the Aquia Formation than from wells in the Magothy and Patapsco Formations. Radium, radon, and gross alpha-particle activity are classified as human carcinogens (cancer group A).
- Radium-224 appears to comprise a major proportion of total radium and gross alpha-particle activity in the study area. Because radium-224 has a half-life of 3.64 days, samples should be analyzed within three days of sample collection in order to accurately assess total radium and gross alpha-particle activity.
- Most of the other constituents in cancer groups A, B2 (probable human carcinogens), and C (possible human carcinogens) were either not detected or were detected at low concentrations. Arsenic (cancer group A) and chloroform (cancer group B2) were detected in separate wells at concentrations above their current or proposed MCLs (respectively); other constituents in cancer group A, B2, or C that were analyzed in the study (including uranium, beryllium, lead, and several VOCs) did not exceed their respective current or proposed MCLs.
- There were no laboratory-confirmed detections of the herbicides **atrazine** or **metolachlor** (although there was one false-positive metolachlor detection by immunoassay).
- Water samples were generally low in TDS (median: 113 mg/L). Samples from the Patapsco and Magothy Formations had lower median values of TDS, pH, calcium, alkalinity (bicarbonate), silica, iron, and manganese, and higher median values of sodium, chloride, nitrate, and dissolved oxygen compared to samples from the Aquia Formation. Values of pH less than 4.0 were recorded in three Magothy wells and one Patapsco well, possibly as a result of pyrite oxidation. Iron was a major component in many wells; samples from 21 of 47 wells had iron concentrations exceeding the secondary MCL of 300 micrograms per liter ( $\mu$ g/L). Nitrate concentrations in three wells exceeded the MCL of 10 mg/L. Chloride concentrations exceeded 250 mg/L (the secondary MCL) in samples from two wells. Twenty-one wells tested positive for total coliform bacteria; one well tested positive for *E. coli*.

In 1994, the Anne Arundel County Council established the Anne Arundel County Advisory Task Force on Cancer Control to review available information on factors contributing to the county's disproportionately high cancer death rate (compared to both the State of Maryland and the United States), and to recommend preventive measures. During the course of the Advisory Task Force's work, the Environmental Risks Subcommittee of the Advisory Task Force found that few data were available concerning carcinogens in domestic well water (Anne Arundel County Advisory Task Force on Cancer Control, 1996). To provide this information, a pilot study of carcinogens in domestic well water was conducted. The pilot study focused on areas that were considered to have the greatest potential for contamination by carcinogens. If high detection rates or concentrations of known or suspected carcinogens in domestic well water were found, a more detailed well-water-quality study, either at the county-wide level or in targeted areas, would be planned.

Ĭ.

#### PURPOSE AND SCOPE

This pilot study was conducted to provide information on the occurrence and distribution of carcinogens and other chemical constituents in domestic well water in selected areas of Anne Arundel County. In this report, the hydrogeologic setting is discussed and a description of the study design is presented (including well selection, chemical constituents, and sampling and analytical methods). The occurrence and distribution of carcinogens in selected areas of the Patapsco, Magothy, and Aquia Formations in the county are discussed. Water-quality and well-construction data are included as Appendixes to this report.

#### ACKNOWLEDGMENTS

The study was a cooperatively funded project between the Anne Arundel County Health Department, the Anne Arundel County Department of Public Works, the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the Maryland Geological Survey, which is part of the Resource Assessment Service of the Maryland Department of Natural Resources. Robert Weber and John Simpson (AAHD) and Harry Hansen (MGS) provided overall guidance for the project. William Deck and Brian Chew (AAHD) were indispensable in performing field reconnaissance and securing permission to sample wells. Thomas Pheiffer, Richard Kutz, and Joseph Slayton (USEPA), Richard Dixon (Anne Arundel County Water Operations Board), and Robert Shedlock (USGS) participated in discussions during project design. Andrew LaMotte of the USGS prepared GIS coverages. Lisa Olsen of the USGS provided assistance and materials for the preparation of VOC-free water for use in quality-control sampling. VOC sample preparation and analysis was facilitated by Susan Warner and Arnold Turner of the USEPA Region III Laboratory. Ann Mullin of the USGS National Water Quality Laboratory (NWQL) much useful information provided on radionuclides. L. Joseph Bachman (USGS) and Stephen R. Kraemer (USEPA) provided helpful comments as colleague reviewers. Figures were prepared by Cynthia Lang-Bachur, Timothy Auer (USGS), and Andrew LaMotte (USGS). Donajean Appel (MGS) did the manuscript layout. The authors gratefully acknowledge the well owners who granted permission to sample their wells.

#### WELL-NUMBERING SYSTEM

Wells in this report are identified by an alphanumeric system. The first two letters, both capitalized, indicate the county where the site is located (AA for Anne Arundel County). The next two letters (the first letter capitalized, the second letter lowercase) correspond to a 5minute by 5-minute block of a grid superimposed over the county: the first letter corresponds to the row and the second letter corresponds to the column within the grid. Wells within each block were numbered sequentially as they were inventoried. Thus, well AA Bf 68 refers to the sixty-eighth well inventoried in the block located at the intersection of row "B" and column "f" in Anne Arundel County. Because all wells sampled for this project were in Anne Arundel County, the "AA" has been dropped from the beginning of the well number when referring to specific wells in the text of this report.

#### HYDROGEOLOGIC SETTING

Anne Arundel County, located in the Coastal Plain Physiographic Province (fig. 1), is underlain by a southeastwardly-dipping sequence of unconsolidated sands, gravels, silts, and clays ranging in thickness from less than 100 feet (ft) in the northwestern part of the county to about 2,600 ft thick in the southeastern part (Hansen and Edwards, 1986). The unconsolidated sediments generally overlie crystalline rocks, which are not a significant source of water in the county. The basement rocks encountered in test wells in the county include microcline-bearing gneisses in the north-central part of the county, and sediments tentatively identified as the (Triassic) Newark Group at Sandy Point State Park on the Broadneck Peninsula (Hansen and Edwards, 1986).

In the northern part of the county, most domestic well water is derived from unconfined or semiconfined sands and gravels in the outcrop areas of the Potomac Group (including the Patuxent and Patapsco Formations), the Magothy Formation, and the Aquia Formation (fig. 2). The Patapsco Formation consists of interbedded silt, clay, and argillaceous, quartzose sand deposited in a fluvial and paludal (swampy) environment. The Magothy Formation, which was deposited in a fluvio-marine environment, consists of medium- to coarse-grained quartzose sand and fine gravel interbedded with dark grav silts and clavs, and lignite and pyrite (FeS<sub>2</sub>) as important accessory minerals (Hansen, 1972). The Aquia Formation, however, was deposited in a marine environment and consists of fine- to coarse-grained sand interbedded with silts, clays, and indurated calcite-cemented sands and fossil beds; glauconite (a hydrous potassium iron silicate) and goethite (FeOOH) comprise between 20 and 70 percent of the formation (Hansen, The aquifers become progressively 1972). deeper to the south and east (fig. 3), and are overlain by relatively impermeable layers that result in confined ground-water conditions. The confined aquifers are replenished by infiltrating water in the recharge (outcrop) areas to the north and west, and to a lesser degree from water entering from the relatively impermeable layers above and below the aquifers. The confined aquifers are considered to be less susceptible to surface contamination than the unconfined aquifers. Most wells in the southern part of the county are completed in the Aquia Formation.

\*

ĥ

(TA)

÷

Ń

#### STUDY DESIGN

#### Well selection

This study focused on wells that are potentially at risk for the presence of carcinogens (tab. 1). These included: (1) wells near areas of commercial and industrial land use or dense residential development located in the general outcrop areas of the Patapsco, Magothy, and Aquia Formations, where well water may be susceptible to VOC contamination from commercial, industrial, or domestic (septic)

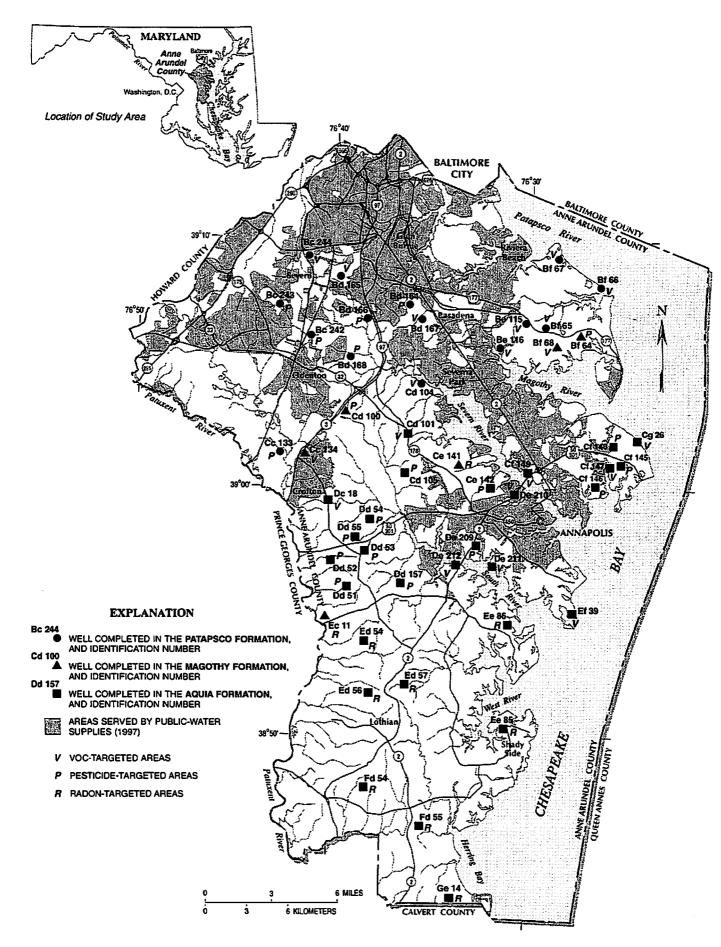



Figure 1. Map of Anne Arundel County showing well locations and areas served by public-water supplies. Source of data for public-water areas: Anne Arundel County Department of Planning and Code Enforcement.

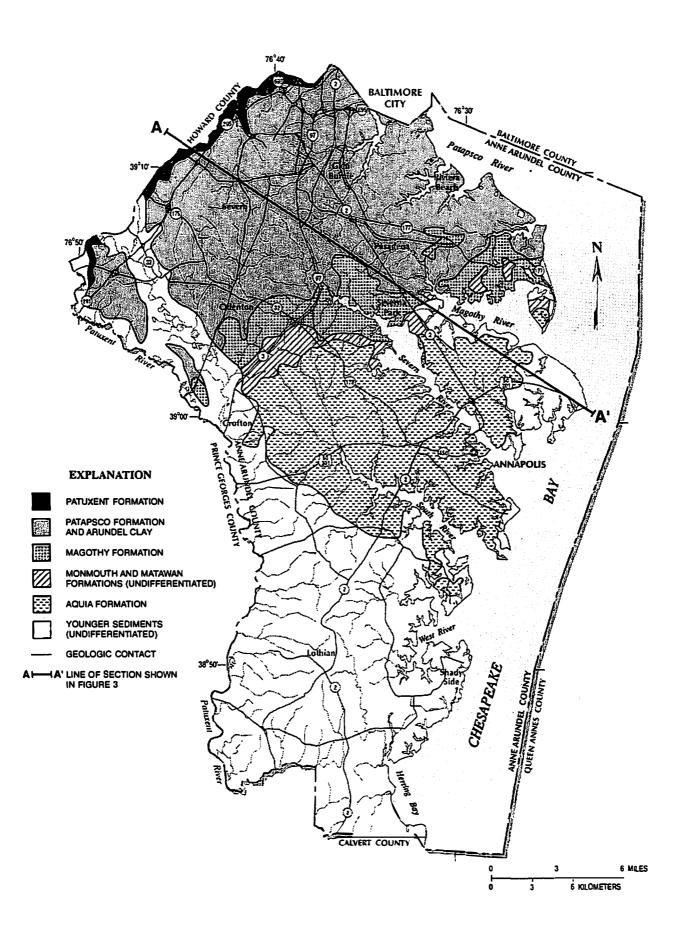



Figure 2. Map showing generalized outcrop areas of geologic formations in Anne Arundel County (Modified from Glaser, 1976).

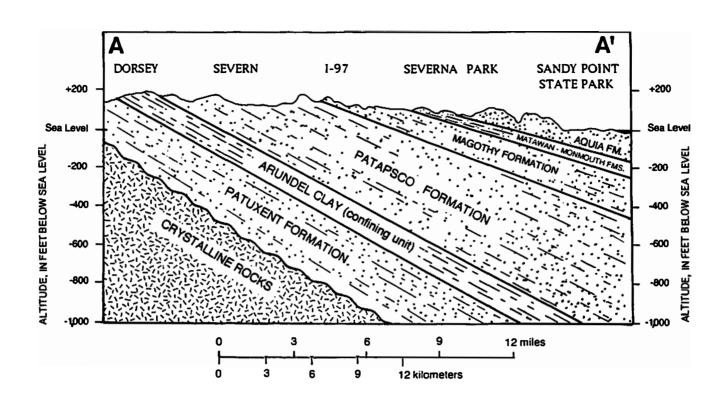



Figure 3. Generalized geologic section across Anne Arundel County. (Location of section is shown in Figure 2.)

effluent: (2) wells located near current and former cropland in the general outcrop areas of the Patapsco, Magothy, and Aquia Formations, where well water may be susceptible to contamination by pesticides; and (3) wells throughout Anne Arundel County (particularly in the Aquia Formation in the southern part of the county) where few data were available on radon and other naturally occurring radionuclides and trace elements that may be dissolved in ground water. These areas are referred to as VOCtargeted areas, pesticide-targeted areas, and radon-targeted areas, respectively. Within these targeted areas, the candidate population of wells consisted of all domestic water-supply wells (including dug wells and wells without construction documentation). Public-supply wells were excluded because they are already routinely tested for contaminants.

The VOC- and pesticide-targeted areas were

delineated using a Geographic Information Systems approach. Pesticide-targeted areas were identified by generating 1:24,000-scale maps showing all residential land not served by public water ("non-public water" areas) within 2,000 ft of current and former cropland. VOC-targeted areas were delineated by generating 1:24,000scale maps showing all non-public water residential land within 2,000 ft of commercial or industrial land-use areas: densely populated residential subdivisions were also considered. Sub-areas within each of the targeted areas were identified and prioritized on the basis of groundwater flow direction (as inferred from potentiometric and topographic maps and other data). The prioritized sub-areas were visited to verify land use, interview residents about their wells, and obtain permission to sample. Wells completed in unconfined and semiconfined aquifers were given priority over confined-

| -                |
|------------------|
| <b>(</b>         |
| <br> <br>        |
|                  |
| ,<br>Lay         |
| 1000 B           |
|                  |
| ι<br>T<br>T<br>T |
| ال               |
| 119              |
|                  |
|                  |
|                  |
|                  |
| 5                |
|                  |
|                  |
| (12)             |

| Potential carcinogenic risk<br>in ground water | Targeted settings                                                                                                                                                                  | Rationale                                                                                                                                                                                                       |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volatile organic compounds                     | Outcrop areas of the Patapsco, Magothy,<br>and Aquia Formations in or near<br>commercial/industrial land use and densely<br>populated residential areas ("VOC-targeted<br>areas"). | Volatile organic compounds may be<br>present due to releases from<br>commercial/industrial activity or septic<br>effluent; unlikely to be a widespread<br>problem in confined aquifers or in rural<br>settings. |
| Pesticides                                     | Outcrop areas of the Patapsco, Magothy,<br>and Aquia Formations near areas of current<br>or former cropland ("pesticide-targeted<br>areas").                                       | Atrazine and metolachlor were the<br>most commonly detected pesticides in<br>Baltimore County, which has similar<br>land use.                                                                                   |
| Radon and other radionuclides                  | Confined and unconfined areas of the<br>Patapsco, Magothy, and Aquia Formations<br>throughout the county ("radon-targeted<br>areas").                                              | Few data are available concerning<br>radionuclide concentrations and<br>distribution in Maryland Coastal Plain<br>aquifers.                                                                                     |

# Table 1. Summary of targeted areas for the Anne Arundel County pilot study of wellwater quality

aquifer wells. Shallow (less than 100 ft deep) wells were given preference. The wells in the radon-targeted areas were selected to achieve a broad spatial distribution in the confined part of the Aquia Formation in the southern part of the county. Fifty domestic wells were selected for sampling (48 drilled and 2 dug wells; fig. 1), including 20 wells in the VOC-targeted areas, 20 wells in the pesticide-targeted areas. Wells in the pesticide-targeted areas tended to be shallower than wells in the radon-targeted area (tab. 2).

### **Chemical Constituents**

Samples were analyzed for a suite of VOCs, the herbicides atrazine and metolachlor, radionuclides, *Escherichia coli* (*E. coli*) and total coliform bacteria, major ions, nitrate, ammonia, and trace elements (app. C1). All the samples were analyzed for the same constituents rather than analyzing for particular constituents in each targeted area. Specific conductance, pH, dissolved oxygen, alkalinity, and water temperature were also measured at each site. The radionuclides and most of the VOCs belong to cancer groups A (human carcinogens), B2 (probable human carcinogens), or C (possible human carcinogens). (See appendix C for definitions of cancer groups.) The major ions

Table 2. Summary of well depths from the Anne Arundel County pilot study in relation to aquifers and targeted areas

[ft, feet]

|                               | (քե    |         |         |                    |
|-------------------------------|--------|---------|---------|--------------------|
| Well-group categories         | Median | Minimum | Maximum | Number<br>of wells |
| All wells                     | 82     | 30      | 371     | 47                 |
| Magothy and<br>Patapsco wells | 83     | 57      | 205     | 20                 |
| Aquia wells                   | 82     | 30      | 371     | 27                 |
| Pesticide-targeted<br>wells   | 83     | 30      | 135     | 20                 |
| VOC-targeted wells            | 73     | 30      | 130     | 20                 |
| Radon-targeted wells          | 275    | 43      | 371     | 7                  |

and field data were measured primarily to identify the hydrochemical characteristics of the principal aquifers in the county.

VOCs include industrial chemicals such as chloroform, vinyl chloride, and other known or suspected carcinogens. Atrazine and metolachlor were analyzed because they are possible human carcinogens, and they were the two of the most frequently detected pesticides in a recent water-quality study in Baltimore County (Bolton, 1998). Confirmation samples from four wells were analyzed for atrazine, metolachlor, and 22 additional pesticides bv use of gas chromatography/mass spectrometry (GC/MS) at the NWOL to confirm the immunoassay results. Radionuclides selected for analysis included radon-222 (hereafter referred to as radon), radium-226, radium-228, uranium, and gross alpha- and gross beta-particle activity<sup>1</sup>. These constituents are all in cancer group A. Arsenic, beryllium, and lead were analyzed because they are either known or probable human carcinogens.

Fifty wells were sampled from September through December 1997 (Phase 1 sampling). Samples from three of the ten wells in the radontargeted areas were determined to have been treated by water-softening systems; the data from these wells are not discussed in this report. A second phase of sampling was conducted in March 1998 in response to the high concentrations of radium and gross alpha- and gross beta-particle activity. Selected wells that had been sampled in Phase 1 were resampled and analyzed for radium-226, radium-228, radium-224, and long-term and short-term gross alpha-particle activity.

#### Sampling Methods

Sampling methods are briefly described here; they are discussed in greater detail in the qualityassurance (OA) project plan that was prepared for this project.<sup>2</sup> Water samples were collected and processed in a consistent manner in order to minimize variability between sampling sites and to maximize data comparability. Each type of sample was collected and processed in accordance with the established protocols of the laboratory analyzing that sample type. All samples were collected by the same personnel using the same field vehicle (a dedicated van specifically for water-quality equipped sampling). Prior to the sample-collection phase of the study, sampling personnel completed a Maryland Department of the Environment certification program for the collection of drinking-water samples.

The sample-collection process included calibration of field equipment, well purging, monitoring field parameters, sample collection, treatment, storage, and transport. The specific conductance, pH, and dissolved-oxygen meters were calibrated at the beginning of each sampling day in accordance with manufacturers' instructions. Once the field equipment had been calibrated, the well purging began. A hose was attached to the nearest "raw water" (untreated) spigot closest to the well. For most houses, this was an outside tap; when possible, the pressuretank spigot was used. The water was allowed to run at a rate of approximately 2 gallons per minute (gpm). Specific conductance, pH, dissolved oxygen, and water temperature measurements were recorded at 5-minute intervals until the following stabilization criteria were met over three consecutive readings: pH,  $\pm 0.05$  pH units; specific conductance,  $\pm 5$ percent (if specific conductance was greater than 100 microsiemens per centimeter  $[\mu S/cm]$ ) or

<sup>&</sup>lt;sup>1</sup> Gross alpha- and gross beta-particle activities were measured approximately 30 days after sampling, and are referred to as "long-term" gross alpha- and gross betaparticle activities in order to distinguish them from "short-term" (measured approximately 3 days after sampling) gross alpha-particle activity, which was analyzed in the second sampling phase of the pilot study.

<sup>&</sup>lt;sup>2</sup> The QA project plan is on file at the Maryland Geological Survey, 2300 St. Paul St., Baltimore, Maryland 21218.

 $\pm 5 \ \mu$ S/cm (if specific conductance was less than 100  $\mu$ S/cm); temperature,  $\pm 0.5$  degrees Celsius. Dissolved oxygen was not used as a purge criteria because a dissolved-oxygen probe was not always available (in which case dissolved oxygen was measured by titration). Wells were not purged of a pre-determined volume of water (such as three casing volumes) because the wells were assumed to be used daily.

Samples were collected once the stabilization criteria had been met. Sample containers, preservatives, and treatments are specified in appendixes C1 and C2. Unfiltered samples were collected directly from the sample spigot. To obtain water for filtered samples, a 5-liter (L) precleaned amber glass bottle (or bottles) was double-rinsed with sample water, filled, and brought into the sampling vehicle where the water was filtered. Samples were filtered through disposable 0.45-micron Gelman<sup>3</sup> capsule filters using a peristaltic pump. Radon samples were collected from the end of the discharge hose because of the impracticality of sampling directly from the pressure-tank spigot. To avoid exposing the radon sample to air, samples were collected by inserting a syringe through a teflon diaphragm, filling it under positive pressure, injecting a 10-cubic centimeter sample into mineral oil, and shaking for 30 seconds to dissolve the radon gas in the oil. After samples had been processed (filtered and/or preservatives added as necessary), alkalinity was determined by digital titration with sulfuric acid (0.1600N or 1.600N, depending upon the pH and specific conductance).

# **Analytical Methods**

Analytical procedures for all constituents are referenced in appendix C1. Major ions, trace elements, gross alpha- and gross beta-particle activity, and pesticide confirmation samples were analyzed by the USGS NWQL in Arvada, Colorado. VOCs were analyzed by the USEPA Region III Office of Analytical Services and Quality Assurance (Annapolis, Maryland). Atrazine and metolachlor were analyzed at the MGS laboratory using an immunosorbent assay method (Lawruk and others, 1993; Hayes and others, 1996). Bacteria and nutrient samples were analyzed by the Maryland Department of Health and Mental Hygiene Laboratory Administration (Baltimore, Maryland). Radium-226 and radium-228 analyses were performed by Quanterra Environmental Services (Richland, Washington) under contract to the NWQL. Radium-224 analyses for samples collected in Phase 2 were performed by the Radioanalytical Services section of the New Jersey Department of Health and Senior Services (Trenton, New Jersey), and by the USGS radiochemistry laboratory in Reston, Virginia. Documentation, reagent preparation, instrument calibration and maintenance, and other quality-assurance measures of the NWOL are presented in Pritt and Raese (1995). Data validation for VOCs analyzed by the USEPA laboratory are described in U.S. Environmental Protection Agency (1994).

ł

أنعر

-

# **Quality Assurance**

The QA project plan describes qualityassurance and quality-control elements of the project, including: experimental design features; project responsibilities; communications procedures; site selection, documentation, and sampling-related procedures; quality-assurance objectives; data reduction, validation, and reporting; and corrective actions. Qualitycontrol samples were collected to measure bias and variability of the sampling and analytical methods, and to identify and correct any problems that arose during the sampling period. These data are summarized in Appendix D.

<sup>&</sup>lt;sup>3</sup> The use of trade names is meant for identification purposes only and does not constitute endorsement.

#### **INORGANIC WATER QUALITY**

This section discusses aspects of inorganic water quality from 47 untreated water samples collected during this study. (Samples from three radon-targeted wells [Ec 11, Ed 56, and Ed 85] were determined to have been treated by water-softening systems thought to have been bypassed at the time of sampling. The data from these wells are not included in this discussion but are included in the data tables in appendix A.) Because of the targeted selection process, this discussion applies only to the target population of wells and may not apply to any larger population of wells. Statistical tests were not performed on the water-quality data because the wells were selected from specifically targeted areas and do not represent a random sample of wells in the county.

Water samples were generally low in TDS (median: 113 mg/L), but contained chemical differences related to the aquifers. Samples from wells in the Patapsco and Magothy Formations had lower median values of TDS, pH, calcium, alkalinity (bicarbonate), silica, iron, and manganese, and higher median values of sodium, chloride, nitrate, and dissolved oxygen than samples from wells in the Aquia Formation (tab. 3). These differences generally reflect the lithologic and hydrogeologic characteristics of the aquifers. The Patapsco and Magothy Formations consist of siliciclastic sands, silts, and clays, which are composed of relatively unreactive minerals such as quartz. The Aquia Formation, however, contains abundant calcitecemented sands and fossil beds. Calcium carbonate dissolution results in generally higher pH, alkalinity, calcium, and TDS in samples from the Aquia Formation as compared to samples from the Magothy and Patapsco Formations. Although there are iron-bearing minerals in all of the aquifers sampled, groundwater iron concentrations are controlled by the dissolved-oxygen content of the ground water. Samples from the relatively deep wells and wells in the confined aquifers tend to be anoxic (indicated for this study by dissolved oxygen concentrations of less than 1 mg/L), which facilitates high iron concentrations. Samples from the shallow wells in the unconfined parts of the aquifers tend to be oxygenated and cannot support iron in solution. The chemical compositions of samples from selected wells are shown in figure 4.

Three wells in the Magothy Formation had pH values below 4.0. This is below the pH of precipitation as measured in Carroll County and Queen Anne's County, which was about 4.1 to 4.3 (National Atmospheric Deposition Program/National Trends Network, 1996). The Magothy Formation is generally lacking in reactive minerals, such as feldspars, that consume acid during the weathering process. Hydrogen ions made up more than 15 percent of cation milliequivalents per liter in three wells (Bf 64, completed in the Magothy Formation, and Bf 65 and Cc 133, both completed in the Patapsco Formation). Pyrite oxidation is a mechanism for generating acidic ground water, as shown by the following generalized reaction:

 $FeS_2 + 3.75 O_2 + 3.5 H_2O \Rightarrow Fe(OH)3 + 4 H^+ + 2 SO_4^{2-}$  (Drever, 1982).

Iron comprised more than 10 percent of cation milliequivalents in nine wells (eight Aquia wells and one Magothy well). Iron concentrations ranged from < 10 to 42,000  $\mu$ g/L (median value: 220  $\mu$ g/L). Twenty-one of the 47 wells had iron concentrations greater than 300  $\mu$ g/L (the secondary MCL for iron); 17 of these exceeded 1,000  $\mu$ g/L. All seven wells with iron concentrations greater than 10,000  $\mu$ g/L were completed in the Aquia Formation.

```
(Text continued on p. 20.)
```

[ $\mu$ S/cm, microsiemens per centimeter; mg/L, milligrams per liter;  $\mu$ , microns;  $\mu$ g/L, micrograms per liter; pCi/L, picocuries per liter]

**C** i **N** 

)

tratil

<del>ر</del>.....ا

| Chemical constituent<br>and well-group categories                         | Median   | Minimum | Maximum | Number of samples |
|---------------------------------------------------------------------------|----------|---------|---------|-------------------|
|                                                                           | <u> </u> |         |         |                   |
| Specific conductance (µS/cm at 25° Celsius)                               |          |         |         |                   |
| All wells                                                                 | 217      | 26      | 1,290   | 47                |
| Magothy and Patapsco wells                                                | 170      | 26      | 1,290   | 20                |
| Aquia wells                                                               | 240      | 58      | 65      | 27                |
| Pesticide-targeted wells                                                  | 190      | 26      | 1,020   | 20                |
| VOC-targeted wells                                                        | 179      | 58      | 1,290   | 20                |
| Radon-targeted wells                                                      | 313      | 100     | 578     | 7                 |
| Fotal dissolved solids (residue on evaporation)<br>(mg/L at 180° Celsius) |          |         |         |                   |
| All wells                                                                 | 113      | 15      | 493     | 46                |
| Magothy and Patapsco wells                                                | 92       | 15      | 493     | 19                |
| Aquia wells                                                               | 153      | 30      | 355     | 27                |
| Pesticide-targeted wells                                                  | 93       | 15      | 493     | 20                |
| VOC-targeted wells                                                        | 113      | 30      | 353     | 19                |
| Radon-targeted wells                                                      | 189      | 103     | 355     | 7                 |
| рН                                                                        |          |         |         |                   |
| All wells                                                                 | 4.9      | 3.5     | 7.7     | 47                |
| Magothy and Patapsco wells                                                | 4.3      | 3.5     | 5.9     | 20                |
| Aquia wells                                                               | 5.9      | 4.1     | 7.7     | 27                |
| Pesticide-targeted wells                                                  | 4.9      | 3.5     | 7.3     | 20                |
| VOC-targeted wells                                                        | 4.6      | 3.7     | 6.8     | 20                |
| Radon-targeted wells                                                      | 7.2      | 5.9     | 7.7     | 7                 |
| Alkalinity (mg/L as CaCO3)                                                |          |         |         |                   |
| All wells                                                                 | 6        | <1      | 200     | 47                |
| Magothy and Patapsco wells                                                | <1       | <1      | 23      | 20                |
| Aquia wells                                                               | 46       | <1      | 200     | 27                |
| Pesticide-targeted wells                                                  | 4.5      | <1      | 94      | 20                |
| VOC-targeted wells                                                        | 1.5      | <1      | 192     | 20                |
| Radon-targeted wells                                                      | 176      | 23      | 200     | -                 |
| Dissolved oxygen (mg/L)                                                   |          |         |         |                   |
| All wells                                                                 | 2.8      | <1      | 9.3     | 47                |
| Magothy and Patapsco wells                                                | 7.25     | <1      | 9.3     | 20                |
| Aquia wells                                                               | <1       | <1      | 8.6     | 27                |
| Pesticide-targeted wells                                                  | 3.55     | <1      | 9.3     | 20                |
| VOC-targeted wells                                                        | 4.8      | <1      | 8.4     | 20                |
| Radon-targeted wells                                                      | <1       | <1      | <1      | 7                 |

12

| Chemical constituent<br>and well-group categories | Median | Minimum | Maximum | Number of<br>samples |
|---------------------------------------------------|--------|---------|---------|----------------------|
| Calcium (mg/L)                                    |        |         |         |                      |
| All wells                                         | 8      | 0.36    | 94      | 47                   |
| Magothy and Patapsco wells                        | 5.65   | 0.36    | 22      | 20                   |
| Aquia wells                                       | 14     | 0.88    | 94      | 27                   |
| Pesticide-targeted wells                          | 7.5    | 0.36    | 48      | 20                   |
| VOC-targeted wells                                | 6.35   | 0.88    | 78      | 20                   |
| Radon-targeted wells                              | 45     | 5.9     | 94      | 7                    |
| Magnesium (mg/L)                                  |        |         |         |                      |
| All wells                                         | 3.4    | 0.15    | 17      | 47                   |
| Magothy and Patapsco wells                        | 3.4    | 0.15    | 15      | 20                   |
| Aquia wells                                       | 3.1    | 0.75    | 17      | 27                   |
| Pesticide-targeted wells                          | 2.8    | 0.15    | 15      | 20                   |
| VOC-targeted wells                                | 3.2    | 1.1     | 17      | 20                   |
| Radon-targeted wells                              | 8      | 2.1     | 11      | 7                    |
| iodium (mg/L)                                     |        |         |         |                      |
| All wells                                         | 5.1    | 0.97    | 187     | 47                   |
| Magothy and Patapsco wells                        | 13.5   | 1       | 187     | 20                   |
| Aquia wells                                       | 2.9    | 0.97    | 39      | 27                   |
| Pesticide-targeted wells                          | 3.45   | 0.97    | 130     | 20                   |
| VOC-targeted wells                                | 15.5   | 1.2     | 187     | 20                   |
| Radon-targeted wells                              | 2.9    | 2.1     | 9       | 7                    |
| Potassium (mg/L)                                  |        |         |         |                      |
| All wells                                         | 3.3    | 0.4     | 9.4     | 47                   |
| Magothy and Patapsco wells                        | 2.2    | 0.4     | 8.7     | 20                   |
| Aquia wells                                       | 3.8    | 1.5     | 9.4     | 27                   |
| Pesticide-targeted wells                          | 3.2    | 0.4     | 8.7     | 20                   |
| VOC-targeted wells                                | 2.75   | 1.1     | 7.8     | 20                   |
| Radon-targeted wells                              | 4.4    | 3.1     | 9.4     | 7                    |
| Chloride (mg/L)                                   |        |         |         |                      |
| All wells                                         | 16     | 0.14    | 310     | 46                   |
| Magothy and Patapsco wells                        | 21     | 1.3     | 310     | 19                   |
| Aquia wells                                       | 7.1    | 0.14    | 180     | 27                   |
| Pesticide-targeted wells                          | 10.55  | 0.14    | 290     | 20                   |
| VOC-targeted wells                                | 27     | 1.6     | 310     | 19                   |
| Radon-targeted wells                              | 1.6    | 0.61    | 75      | 7                    |

[ $\mu$ S/cm, microsiemens per centimeter; mg/L, milligrams per liter;  $\mu$ , microns;  $\mu$ g/L, micrograms per liter; pCi/L, picocuries per liter]

V MI

ا ا

i

1

j

5

1

5

í

••••••

| Chemical constituent<br>and well-group categories | Median | Minimum | Maximum | Number of samples |
|---------------------------------------------------|--------|---------|---------|-------------------|
| Sulfate (mg/L)                                    |        |         |         |                   |
| All wells                                         | 11.5   | <0.10   | 110     | 46                |
| Magothy and Patapsco wells                        | 13     | 0.19    | 110     | 19                |
| Aquia wells                                       | 9.1    | < 0.10  | 40      | 27                |
| Pesticide-targeted wells                          | 9.25   | <0.10   | 46      | 20                |
| VOC-targeted wells                                | 12     | 0.58    | 110     | 19                |
| Radon-targeted wells                              | 13     | 5.7     | 40      | 7                 |
| Fluoride (mg/L)                                   |        |         |         |                   |
| All wells                                         | <0.10  | <0.10   | 0.61    | 47                |
| Magothy and Patapsco wells                        | <0.10  | <0.10   | 0.30    | 20                |
| Aquia wells                                       | 0.14   | <0.10   | 0.61    | 27                |
| Pesticide-targeted wells                          | <0.10  | <0.10   | 0.61    | 20                |
| VOC-targeted wells                                | <0.10  | <0.10   | 0.31    | 20                |
| Radon-targeted wells                              | 0.19   | 0.11    | 0.30    | 7                 |
| ilica (mg/L as SiO <sub>2</sub> )                 |        |         |         |                   |
| All wells                                         | 17     | 6       | 51      | 47                |
| Magothy and Patapsco wells                        | 9.15   | 6       | 51      | 20                |
| Aquia wells                                       | 22     | 14      | 46      | 21                |
| Pesticide-targeted wells                          | 18     | 6.3     | 46      | 20                |
| VOC-targeted wells                                | 12.5   | 6       | 41      | 20                |
| Radon-targeted wells                              | 18     | 14      | 51      | -                 |
| Color (platinum-cobalt units)                     |        |         |         |                   |
| All wells                                         | 2      | <1      | 160     | 47                |
| Magothy and Patapsco wells                        | <1     | <1      | 110     | 20                |
| Aquia wells                                       | 3      | <1      | 160     | 27                |
| Pesticide-targeted wells                          | 2.5    | <1      | 160     | 20                |
| VOC-targeted wells                                | <1     | <1      | 100     | 20                |
| Radon-targeted wells                              | 3      | 1       | 110     | 7                 |
| ron (0.45µ-filtered) (µg/L)                       |        |         |         |                   |
| All wells                                         | 140    | <3      | 41,300  | 47                |
| Magothy and Patapsco wells                        | 13.5   | <3      | 9,000   | 20                |
| Aquia wells                                       | 610    | <10     | 41,300  | 27                |
| Pesticide-targeted wells                          | 375    | <3      | 41,300  | 20                |
| VOC-targeted wells                                | 55     | <3      | 17,000  | 20                |
| Radon-targeted wells                              | 270    | 56      | 9,000   |                   |

[ $\mu$ S/cm, microsiemens per centimeter; mg/L, milligrams per liter;  $\mu$ , microns;  $\mu$ g/L, micrograms per liter; pCi/L, picocuries per liter]

14

| Chemical constituent<br>and well-group categories | Median | Minimum                               | Maximum | Number of samples |
|---------------------------------------------------|--------|---------------------------------------|---------|-------------------|
|                                                   |        | · · · · · · · · · · · · · · · · · · · |         |                   |
| ron (unfiltered) (μg/L)                           |        |                                       |         |                   |
| All wells                                         | 220    | <10                                   | 42,000  | 47                |
| Magothy and Patapsco wells                        | 20     | <10                                   | 7,800   | 20                |
| Aquia wells                                       | 690    | <10                                   | 42,000  | 27                |
| Pesticide-targeted wells                          | 505    | <10                                   | 42,000  | 20                |
| VOC-targeted wells                                | 65     | <10                                   | 17,000  | 20                |
| Radon-targeted wells                              | 300    | 60                                    | 7,800   | 7                 |
| Aanganese (0.45μ-filtered) (μg/L)                 |        |                                       |         |                   |
| All wells                                         | 37     | 4.2                                   | 488     | 47                |
| Magothy and Patapsco wells                        | 27.5   | 4.2                                   | 448     | 20                |
| Aquia wells                                       | 53     | 5.8                                   | 488     | 27                |
| Pesticide-targeted wells                          | 82.5   | 4.2                                   | 488     | 20                |
| VOC-targeted wells                                | 36     | 15                                    | 378     | 20                |
| Radon-targeted wells                              | 30     | 5.8                                   | 161     | 7                 |
| Manganese (unfiltered) (μg/L)                     |        |                                       |         |                   |
| All wells                                         | 39     | <10                                   | 510     | 47                |
| Magothy and Patapsco wells                        | 29.5   | <10                                   | 460     | 20                |
| Aquia wells                                       | 53     | <10                                   | 510     | 27                |
| Pesticide-targeted wells                          | 82     | <10                                   | 510     | 20                |
| VOC-targeted wells                                | 34     | <10                                   | 350     | 20                |
| Radon-targeted wells                              | 28     | <10                                   | 97      | 7                 |
| ead (µg/L)                                        |        |                                       |         |                   |
| All wells                                         | <1     | <1                                    | 12      | 47                |
| Magothy and Patapsco wells                        | 1      | <1                                    | 8       | 20                |
| Aquia wells                                       | <1     | <1                                    | 12      | 27                |
| Pesticide-targeted wells                          | <1     | <1                                    | 8       | 20                |
| VOC-targeted wells                                | 1      | <1                                    | 12      | 20                |
| Radon-targeted wells                              | <1     | <1                                    | <1      | 7                 |
| Arsenic (µg/L)                                    |        |                                       |         |                   |
| All wells                                         | <1     | <1                                    | 110     | 47                |
| Magothy and Patapsco wells                        | <1     | <1                                    | 110     | 20                |
| Aquia wells                                       | <1     | <1                                    | 1       | 27                |
| Pesticide-targeted wells                          | <1     | <1                                    | 4       | 20                |
| VOC-targeted wells                                | <1     | <1                                    | 110     | 20                |
| Radon-targeted wells                              | <1     | <1                                    | 1       | 7                 |

[ $\mu$ S/cm, microsiemens per centimeter; mg/L, milligrams per liter;  $\mu$ , microns;  $\mu$ g/L, micrograms per liter; pCi/L, picocuries per liter]

IT.

(j)

(ESI)

ر ا ایسا،

-

j

ł

ر سرو

ŝ

**4**113

ا اس

4

| Chemical constituent<br>and well-group categories | Median             | Minimum | Maximum | Number of samples |
|---------------------------------------------------|--------------------|---------|---------|-------------------|
| Beryllium (μg/L)                                  |                    |         |         |                   |
| All wells                                         | <2                 | <2      | 3.1     | 47                |
| Magothy and Patapsco wells                        | <2                 | <2      | 3.1     | 20                |
| Aquia wells                                       | <2                 | <2      | 3       | 27                |
| Pesticide-targeted wells                          | <2                 | <2      | 2.6     | 20                |
| VOC-targeted wells                                | <2                 | <2      | 3.1     | 20                |
| Radon-targeted wells                              | <2                 | <2      | 3       | 7                 |
| Nitrate-plus-nitrite (mg/L as N)                  |                    |         |         |                   |
| All wells                                         | 0.5                | <0.2    | 20.5    | 47                |
| Magothy and Patapsco wells                        | 2.65               | <0.2    | 13      | 20                |
| Aquia wells                                       | <0.2               | <0.2    | 20.5    | 27                |
| Pesticide-targeted wells                          | 0.45               | <0.2    | 20.5    | 20                |
| VOC-targeted wells                                | 2.25               | <0.2    | 11.4    | 20                |
| Radon-targeted wells                              | <0.2               | <0.2    | 6.3     | 7                 |
| Ammonium (mg/L as N)                              |                    |         |         |                   |
| All wells                                         | <0.2               | <0.2    | 3.2     | 47                |
| Magothy and Patapsco wells                        | <0.2               | <0.2    | 3.2     | 20                |
| Aquia wells                                       | <0.2               | <0.2    | 0.3     | 27                |
| Pesticide-targeted wells                          | <0.2               | <0.2    | 0.3     | 20                |
| VOC-targeted wells                                | <0.2               | <0.2    | 3.2     | 20                |
| Radon-targeted wells                              | <0.2               | <0.2    | <0.2    | 7                 |
| Total Coliform bacteria                           |                    |         |         |                   |
| All wells                                         | 26 negative, 21 p  | ositive |         | 47                |
| Magothy and Patapsco wells                        | 15 negative, 5 po  | sitive  |         | 20                |
| Aquia wells                                       | 11 negative, 16 p  | ositive |         | 27                |
| Pesticide-targeted wells                          | 7 negative, 13 po  | sitive  |         | 20                |
| VOC-targeted wells                                | 14 negative, 6 po  | sitive  |         | 20                |
| Radon-targeted wells                              | 5 negative, 2 posi | tive    |         | 7                 |
| Escherichia coli (E. coli)                        |                    |         |         |                   |
| All wells                                         | 46 negative, 1 po  | sitive  |         | 47                |
| Magothy and Patapsco wells                        | 20 negative, 0 po  | ositive |         | 20                |
| Aquia wells                                       | 26 negative, 1 po  |         |         | 27                |
| Pesticide-targeted wells                          | 20 negative, 0 po  |         |         | 20                |
| VOC-targeted wells                                | 19 negative, 1 po  |         |         | 20                |
| Radon-targeted wells                              | 7 negative, 0 posi | tive    |         | 7                 |

[μS/cm, microsiemens per centimeter; mg/L, milligrams per liter; μ, microns; μg/L, micrograms per liter; pCi/L, picocuries per liter]

| Chemical constituent<br>and well-group categories | Median | Minimum | Maximum | Number of<br>samples |
|---------------------------------------------------|--------|---------|---------|----------------------|
| Atrazine (µg/L)                                   |        |         |         |                      |
| All wells                                         | <0.1   | <0.1    | <0.1    | 47                   |
| Magothy and Patapsco wells                        | <0.1   | < 0.1   | <0.1    | 20                   |
| Aquia wells                                       | <0.1   | < 0.1   | <0.1    | 27                   |
| Pesticide-targeted wells                          | <0.1   | <0.1    | <0.1    | 20                   |
| VOC-targeted wells                                | <0.1   | < 0.1   | < 0.1   | 20                   |
| Radon-targeted wells                              | <0.1   | <0.1    | <0.1    | 10                   |
| Metolachlor (µg/L)                                |        |         |         |                      |
| All wells                                         | <0.1   | <0.1    | 0.21    | 47                   |
| Magothy and Patapsco wells                        | <0.1   | <0.1    | 0.21    | 20                   |
| Aquia wells                                       | <0.1   | <0.1    | <0.1    | 27                   |
| Pesticide-targeted wells                          | <0.1   | <0.1    | 0.21    | 20                   |
| VOC-targeted wells                                | <0.1   | <0.1    | <0.1    | 20                   |
| Radon-targeted wells                              | <0.1   | <0.1    | <0.1    | 7                    |
| Radon (pCi/L)                                     |        |         |         |                      |
| All wells                                         | 292    | 106     | 989     | 47                   |
| Magothy and Patapsco wells                        | 180    | 106     | 436     | 20                   |
| Aquia wells                                       | 328    | 149     | 989     | 27                   |
| Pesticide-targeted wells                          | 280.5  | 106     | 726     | 20                   |
| VOC-targeted wells                                | 286.5  | 110     | 989     | 20                   |
| Radon-targeted wells                              | 299    | 228     | 486     | 7                    |
| Gross alpha-particle activity (pCi/L)             |        |         |         |                      |
| All wells                                         | <3     | <3      | 110     | 47                   |
| Magothy and Patapsco wells                        | 10.55  | <3      | 110     | 20                   |
| Aquia wells                                       | <3     | <3      | 5.5     | 27                   |
| Pesticide-targeted wells                          | <3     | <3      | 79      | 20                   |
| VOC-targeted wells                                | 7.35   | <3      | 110     | 20                   |
| Radon-targeted wells                              | <3     | <3      | 4.9     | -                    |
| Gross beta-particle activity (pCi/L)              |        |         |         |                      |
| All wells                                         | 5.9    | <4      | 88      | 47                   |
| Magothy and Patapsco wells                        | 22     | <4      | 88      | 20                   |
| Aquia wells                                       | 5      | <4      | 10      | 21                   |
| Pesticide-targeted wells                          | 4.8    | <4      | 80      | 20                   |
| VOC-targeted wells                                | 11     | <4      | 88      | 20                   |
| Radon-targeted wells                              | 6.2    | <4      | 10      | -                    |

[ $\mu$ S/cm, microsiemens per centimeter; mg/L, milligrams per liter;  $\mu$ , microns;  $\mu$ g/L, micrograms per liter; pCi/L, picocuries per liter]

17

.

N

1

....

i

ا زیب

فنبعه

**R**eal

i

**7**00g

-----

| |

- 1

| Chemical constituent       |        |           |         | Number of |  |
|----------------------------|--------|-----------|---------|-----------|--|
| and well-group categories  | Median | Minimum   | Maximum | samples   |  |
| Radium-226 (pCi/L)         |        |           |         |           |  |
| All wells                  | 0.1    | <0.1      | 33      | 47        |  |
| Magothy and Patapsco wells | 4.8    | <0.1      | 33      | 20        |  |
| Aquia wells                | <0.1   | <0.1      | 1.1     | 27        |  |
| Pesticide-targeted wells   | <0.1   | <0.1 <0.1 |         |           |  |
| VOC-targeted wells         | 2.7    | <0.1      | 33      | 20        |  |
| Radon-targeted wells       | <0.1   | <0.1      | 0.3     | 7         |  |
| Radium-228 (pCi/L)         |        |           |         |           |  |
| All wells                  | <1     | <1        | 35      | 47        |  |
| Magothy and Patapsco wells | 8.7    | <1        | 35      | 20        |  |
| Aquia wells                | <1     | <1        | 1.1     | 27        |  |
| Pesticide-targeted wells   | <1     | <1        | 35      | 20        |  |
| VOC-targeted wells         | 4.85   | <1        | 33      | 20        |  |
| Radon-targeted wells       | <1     | <1        | <1      | 7         |  |
| Uranium (µg/L)             |        |           |         |           |  |
| All wells                  | <1     | <1        | 14      | 47        |  |
| Magothy and Patapsco wells | <1     | <1        | 14      | 20        |  |
| Aquia wells                | <1     | <1        | <1      | 27        |  |
| Pesticide-targeted wells   | <1     | <1        | <1      | 20        |  |
| VOC-targeted wells         | <1     | <1        | 14      | 20        |  |
| Radon-targeted wells       | <1     | <1        | <1      | 7         |  |

[ $\mu$ S/cm, microsiemens per centimeter; mg/L, milligrams per liter;  $\mu$ , microns;  $\mu$ g/L, micrograms per liter; pCi/L, picocuries per liter]

<sup>1</sup> Metolachlor not detected in the same sample when analyzed by gas chromatography/mass spectrometry

18

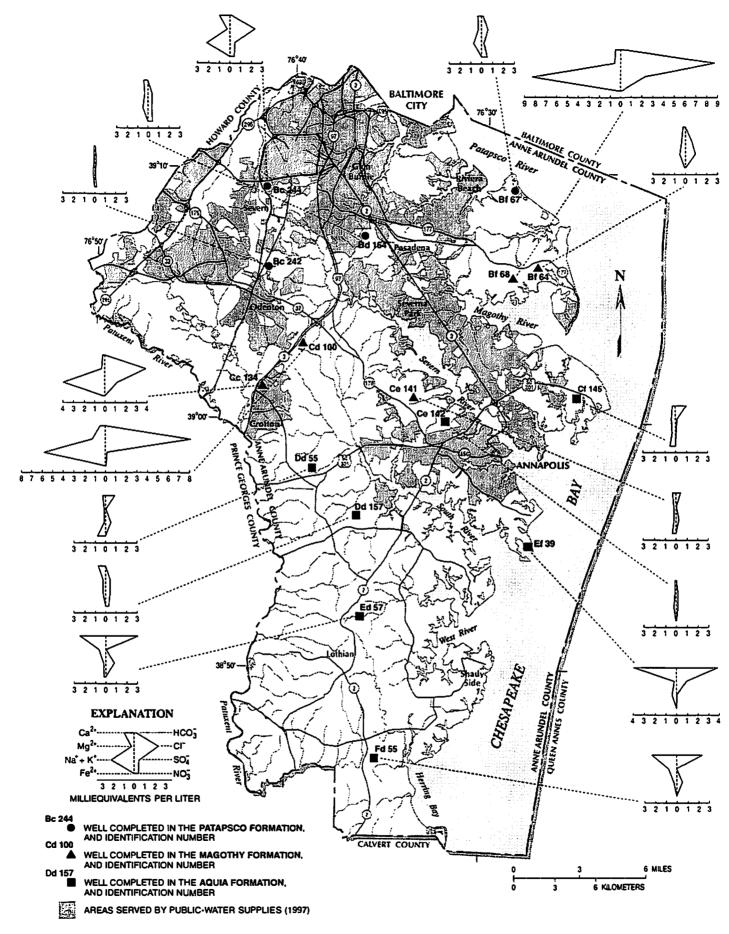



Figure 4. Map showing Stiff diagrams of selected wells in the Patapsco, Magothy, and Aquia Formations in Anne Arundel County, Maryland. Source of data for public-water areas: Anne Arundel County Department of Planning and Code Enforcement.

- j (im) i territa 1

Nitrate concentrations ranged from less than 0.2 to 20.5 mg/L as nitrogen (median: 0.5 mg/L). (Samples were analyzed for nitrate-plusnitrite; in this report, nitrate refers to the nitrateplus-nitrite analyses because nitrite concentrations are assumed to be negligible. All nitrate and ammonia analyses are reported as nitrogen.) Detectable amounts (>0.2 mg/L) of nitrate were present in 27 of the 47 untreated samples. Samples from three wells exceeded 10 mg/L (the MCL for nitrate). Two of these wells (Bd 166 and Be 116) are less than 75 ft deep and are located in densely populated residential developments; the third (Cd 105) is a dug well located within an enclosed dog kennel. Detectable amounts (>0.2 mg/L) of ammonium were present in samples from 9 of 47 wells (range: 0.2-3.2 mg/L). At the pH range encountered in this study, any ammonia nitrogen in solution is assumed to be in the form of the ammonium ion  $(NH_4^+)$  (Hem, 1985).

High concentrations of nitrate have been associated with methemoglobinemia ("blue baby syndrome") in infants, in which the blood's capacity to transport oxygen is diminished (Canter, 1997). Sources of nitrate to ground water include nitrogen in precipitation, organic matter in soils, fertilizers, and human and animal wastes. Virtually all nitrate in ground water is produced by the bacterially mediated oxidation of ammonium (NH<sub>4</sub><sup>+</sup>) to nitrite (NO<sub>2</sub><sup>-</sup>) and then to nitrate (NO<sub>3</sub><sup>-</sup>) (Hallberg and Keeney, 1993). This nitrification process can be shown by the overall reaction:

$$NH_4^+ + 2O_2 - NO_3^- + 2H^+ + H_2O_{(Canter, 1997)}.$$

Nitrate is generally absent in anoxic waters, presumably due to denitrification (the process by which nitrate is reduced to gaseous nitrogen [either N<sub>2</sub> or N<sub>2</sub>O]). Only one of the 17 anoxic water samples (from well Ee 86) had detectable nitrate. Five of these 17 wells had chloride concentrations above 15 mg/L, which suggests that the ground-water quality has been affected by human activity. Therefore, the lack of nitrate indicates that either there has been a lack of nitrogen inputs or that the hydrochemical conditions are favorable to denitrification.

Concentrations of chloride ranged from 0.14 to 310 mg/L (median: 16 mg/L). Chloride concentrations above approximately 250 mg/L cause water to taste salty and can be corrosive to well pumps, appliances, and other plumbing fixtures. The chloride concentrations exceeded 250 mg/L (the secondary MCL for chloride) in only two wells (Bf 68, 310 mg/L; Cd 100, 290 Potential sources of ground-water mg/L). chloride in the study area include deicing salts, septic-system effluent, brine from rejuvenation of water-treatment systems, and agricultural Precipitation probably contributes activities. very little to chloride in ground water in the study area; a three-fold concentration by evapotranspiration would result in chloride of less than 1 mg/L. Salt- or brackish-water intrusion from overpumping of aquifers has resulted in increased chlorides in some coastal and tidal areas in Anne Arundel County and elsewhere in Maryland (Drummond, 1988; Hiortdahl, 1990; Fleck, Andreasen, and Smith, 1996); however, the four wells with chloride concentrations greater than 100 mg/L are not close enough to the Chesapeake Bay or its tributaries to have been affected by brackishwater intrusion. There are no evaporite minerals such as halite (NaCl) in the aquifers in the study area.

Chloride concentrations tended to be higher in the Magothy and Patapsco wells than in the Aquia wells. This is probably related to the different hydrogeologic settings of the targeted areas: many of the Aquia wells are located in the southern part of the county, where the Aquia Formation is a confined aquifer and is therefore better protected from surface contamination. Most of the wells completed in the Magothy and Patapsco Formations are in unconfined or semiconfined aquifers in the central and northern areas of the county, where ground water is more susceptible to contamination.

Arsenic (cancer group A; human carcinogen) was detected in six samples (range:  $1-110 \mu g/L$ ). Only one arsenic sample (well Cc 134, near Crofton) exceeded the MCL of 50  $\mu$ g/L. (The well was resampled, with similar results). The source of the arsenic is not known. Arsenic is produced as a byproduct of industrial applications, pesticide production and application, and burning of fossil fuels (U.S. Environmental Protection Agency, 1992a). It is present in chromated copper arsenate, a widely used wood preservative in Maryland (Maryland Department of Agriculture, 1996). It can form metal arsenides and sulfides (Hem, 1985). Beryllium (cancer group B2; probable human carcinogen) was detected in five samples (range:  $2-3.1 \mu g/L$ ). None of the detections exceeded the MCL of 4  $\mu$ g/L. Bervllium is uncommon in sedimentary deposits and is relatively immobile in ground water. The major source of beryllium to the environment is combustion of coal and fuel oil (Hem, 1985; U.S. Environmental Protection Agency, 1992b). Lead (cancer group B2) was detected in 20 samples (range: 1-12  $\mu$ g/L). None of the detections exceeded 15  $\mu$ g/L (the USEPA's action level for lead). Detections were prevalent among samples with pH values below 5. Lead is relatively immobile in the environment due to solubility of lead hydroxy carbonates, adsorption, and coprecipitation (Hem, 1985), and many of the lead detections may have been derived from household plumbing fixtures, particularly older pipe joints containing lead solder.

#### SYNTHETIC ORGANIC COMPOUNDS

#### Volatile Organic Compounds

Three VOCs were detected at concentrations above minimum reporting limits (MRLs). Chloroform (cancer group B2) was detected in seven wells (range: 1-95  $\mu$ g/L). Six of the seven detections were less than 4  $\mu$ g/L; the seventh detection (95  $\mu$ g/L) was from a dug well (Cf 148) that the owner reported had been chlorinated several weeks prior to sampling. The concentration exceeded the proposed MCL of 80  $\mu$ g/L total for all trihalomethanes. Bromodichloromethane (cancer group B2) also was detected in this well (3.3  $\mu$ g/L). Both chloroform and bromodichloromethane have been detected in septic effluent and in regional studies (Viraraghavan and Hashem, 1986; Daly and Lindsey, 1996). VOCs did not exceed MCLs in any of the other wells. Methyl tertbutyl ether (MTBE; tentative cancer group C) was detected in well Be 115 at 6.2  $\mu$ g/L. MTBE is an octane booster in gasoline that has been frequently detected in ground water (Squillace and others, 1995; Daly and Lindsey, 1996). The well is located near a commercial area along Mountain Road.

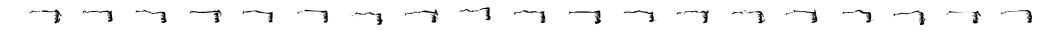
#### Atrazine and Metolachlor

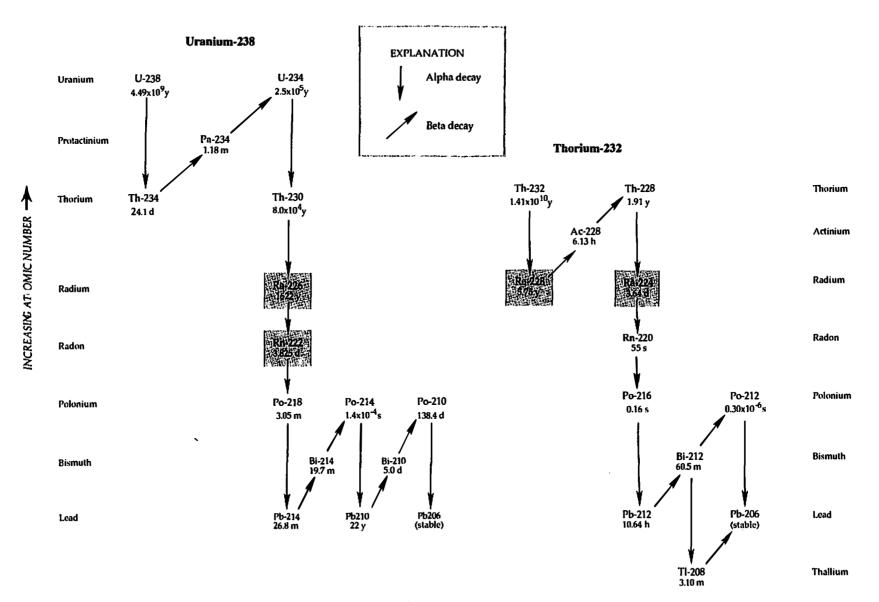
Metolachlor was detected in well Bd 166 (0.2  $\mu$ g/L) by immunoassay; however, it was not detected (<0.2  $\mu$ g/L) in a confirmation sample analyzed by GC/MS at the NWQL. The GC/MS analysis is considered to be more reliable than the immunoassay test for quantitative analysis, and the immunoassay detection is considered to be a false-positive test. All other immunoassay tests for atrazine and metolachlor were below MRLs.

#### RADIONUCLIDES

The radionuclides tested in this study are human carcinogens (cancer group A). Radionuclide concentrations are usually reported in terms of the number of disintegrations per second per volume of water. In this report, concentrations are reported in picocuries per liter, where one picocurie equals  $3.7 \times 10^{-2}$ disintegrations per second. Uranium is reported in  $\mu g/L$ .

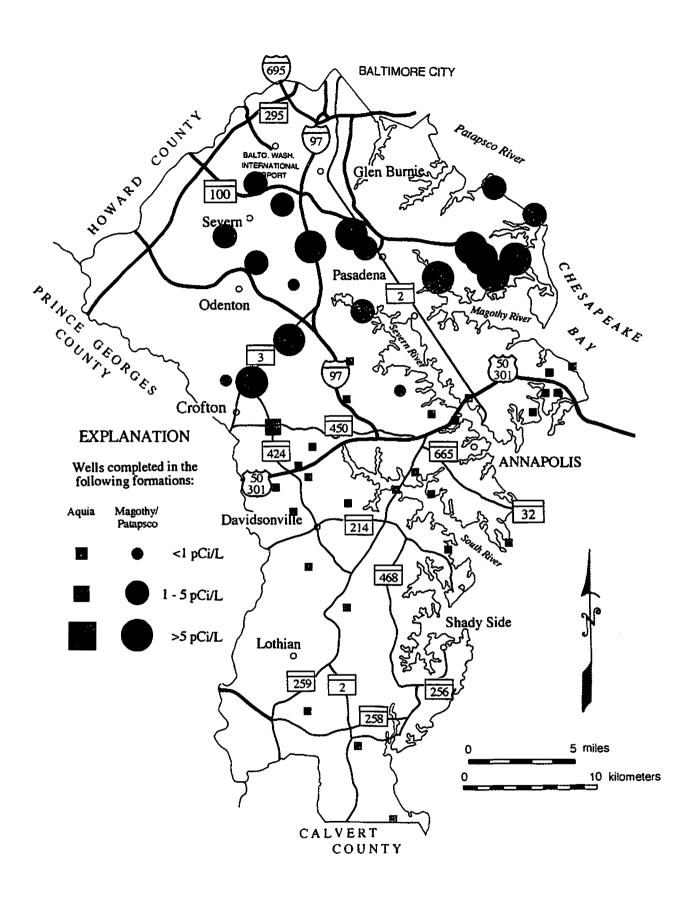
## Radium-226, Radium-228, and Gross Alpha- and Gross Beta-Particle Activity


Radium-226 is one of the intermediate disintegration products in the uranium-238 decay series (fig. 5). Radium-228 is one of the intermediate products in the thorium-232 decay series. Radium-226 has a half-life of 1,622 years; the half-life of radium-228 is 5.7 years. (The half-life of a radionuclide is the time it takes for the original concentration to be reduced by one-half). Radium-226 emits an alpha particle and radium-228 emits a beta particle when they undergo radioactive decay. An alpha particle consists of two protons and two neutrons; beta particles are identical to electrons, but are emitted from the nucleus. Gross alphaand gross beta-particle activity are thus used to screen for the presence of alpha- and betaemitting radionuclides. The USEPA has established MCLs for gross alpha-particle activity (15 pCi/L) and radium-226 plus radium-228 (5 pCi/L). The MCL for gross beta-particle activity, 4 millirems (mrem) per year, is a dosage rather than a concentration; the amount needed to produce this dosage varies among betaemitting isotopes.


Radium-226 concentrations from all samples ranged from less than 0.1 to 33 pCi/L (median value: 0.1 pCi/L); radium-228 concentrations ranged from less than 1 to 35 pCi/L (median value: less than 1 pCi/L) (tab. 3). Radium concentrations were higher in samples from the Magothy and Patapsco Formations than in samples from the Aquia Formation (figs. 6 and 7). Fifteen of the 20 wells in the Magothy and Patapsco Formations had radium-226 plus radium-228 concentrations exceeding the MCL of 5 pCi/L. Wells Bf 68 and Cd 100 had the maximum combined radium values (66 pCi/L in both wells). The maximum radium-226 plus radium-228 concentration from the Aquia Formation was 1.1 pCi/L. Gross alpha- and gross beta-particle activities, which correlate strongly with radium-226 and radium-228 respectively (figs. 8 and 9), were also higher in

samples from wells in the Magothy and Patapsco Formations than in samples from wells in the Aquia Formation. Gross alpha- and gross betaparticle activities ranged from <3 to 110 pCi/L and <4 to 88 pCi/L, respectively.

The high concentrations of radium in Anne Arundel County occur in acidic ground water as indicated by the sharp increase in radium concentrations from samples with pH values less than 5 (fig. 10). Radium, a divalent cation  $(Ra^{2+})$  whose chemical behavior is similar to that of calcium, has been shown to be strongly influenced by sorption and ion exchange processes that are often pH-dependent (Langmuir and Riese, 1982; Beneš and others, 1984; Webster and others, 1995). The surface charge on metal oxyhydroxides is strongly pHdependent: the net charge is positive at low pH values and negative at higher pH values (Langmuir, 1997). At lower pH values, the oxyhydroxides are protonated and may have a positive surface charge that is not conducive to sorbing divalent cations such as Ra<sup>2+</sup>. At higher pH values, the surface charge becomes negative and cations are able to sorb. The pH at which the net surface charge changes from negative to positive due to absorption of H<sup>+</sup> or OH<sup>-</sup> ions is called the point of zero net proton charge (PZNPC). Materials whose surface charge is pH-dependent include quartz (PZNPC: 1-3), amorphous silica (3.5), feldspars (5.2-6.8 [estimated]), kaolinite ( $\leq 2-4.6$ ),  $\alpha$ -hematite (natural hematite; 4.2-6.9), goethite (5.9-6.7), and amorphous Fe(OH)<sub>3</sub> (8.5-8.8) (Langmuir, 1997). Radium is strongly adsorbed onto quartz, kaolinite, and ferric oxyhydroxides (Beneš and others, 1984; Ames and others, 1983a, 1983b). Iron oxides and oxyhydroxides are common in the Potomac and Magothy Formations (Otton, 1955; Glaser, 1969), and provide a sorbing surface for radium.


Radium concentrations in the Magothy and Patapsco Formations were positively correlated (r=0.749) with TDS (fig. 11). The highest radium-226, radium-228, and gross alpha- and gross beta-particle activity values were from two





**Radioactive Decay Series** 

Figure 5. Uranium-238 and thorium-232 radioactive decay series. Shaded isotopes were analyzed in the pilot study. Isotope half-lives are given in years (y), days (d), hours (h), minutes (m), and seconds (s). Modified from Kozinski and others (1995).



rang

}

1 673

10.00

Figure 6. Distribution of radium-226 in well water in Anne Arundel County. pCi/L, picocuries per liter.

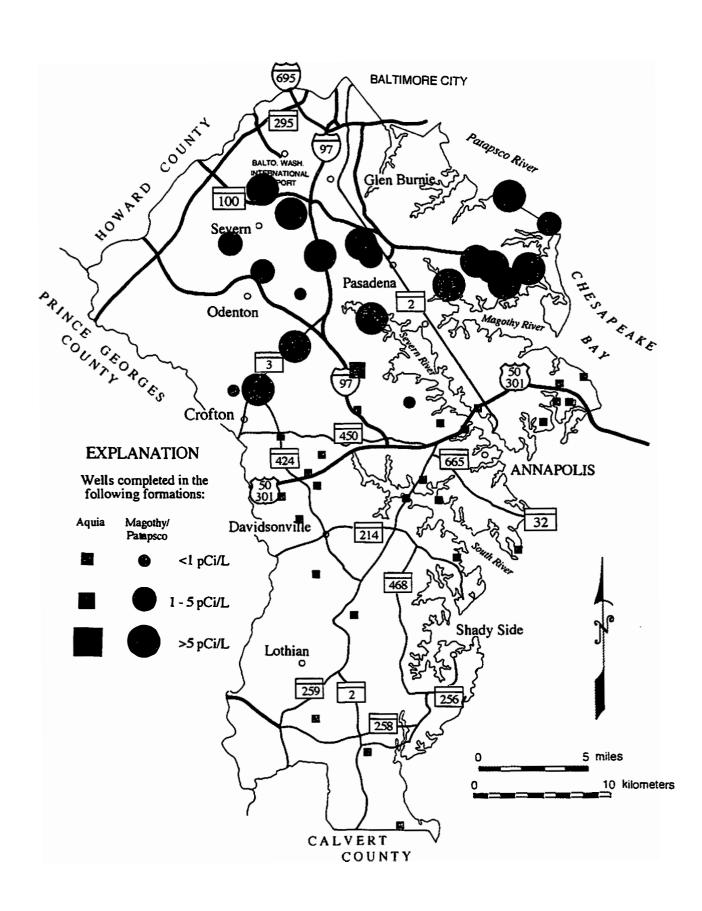
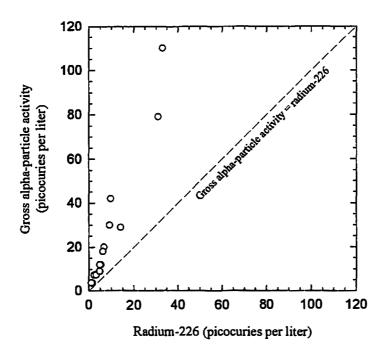




Figure 7. Distribution of radium-228 in well water in Anne Arundel County. pCi/L, picocuries per liter.



<u> (</u>

19

100

199

ليسر

Figure 8. Relationship between gross alpha-particle activity and radium-226 concentration.

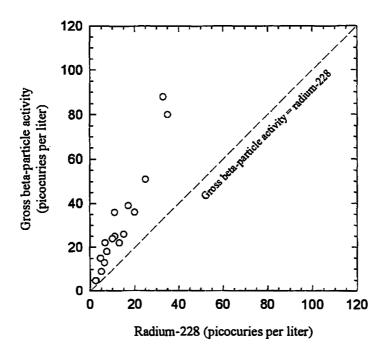



Figure 9. Relationship between gross beta-particle activity and radium-228 concentration.

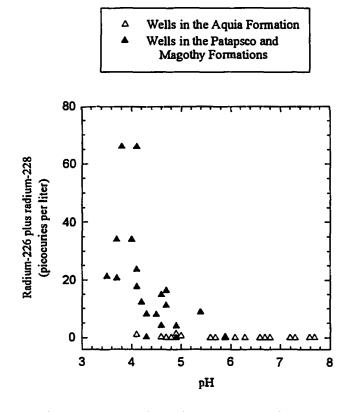
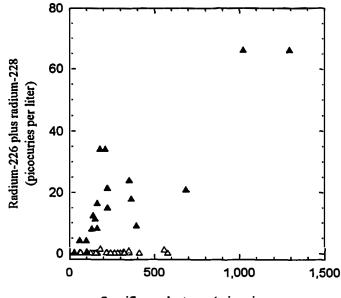




Figure 10. Relationship between radium-226 plus radium-228 and pH.



Specific conductance (microsiemens per centimeter at 25 degrees Celsius)

Figure 11. Relationship between radium-226 plus radium-228 and specific conductance.

wells (Bf 68 and Cd 100) that had the highest chloride and TDS values of all wells sampled. The mechanism is assumed to be ion exchange whereby the cations, particularly the divalent cations such as  $Ca^{2+}$  and  $Mg^{2+}$  exchange for the Ra<sup>2+</sup> ions on the sediment surfaces. Radium was shown by Tanner (1964) to be most mobile in chloride-rich reducing ground water with high TDS content. Radium desorption from sediment has been found to increase with increasing dissolved-solids content of the water (Li and others, 1977; Webster and others, 1995). An increase in calcium and magnesium inputs into the ground-water system resulting from agricultural practices was proposed as a factor in increased radium concentrations in ground water in southern New Jersey (Szabo and others, 1997). Although TDS content was positively correlated and pH was negatively correlated with radium concentrations in the Magothy and Patapsco Formations in this study, the individual effects of these components on radium concentrations could not be evaluated because the samples with high specific conductance values also had low pH values.

The source of the radium in the samples is believed to be naturally occurring uranium and thorium in the Patapsco and Magothy Formations. Radium-226 is in the uranium-238 radioactive decay series, and radium-228 and radium-224 are both in the thorium-232 decay series (fig. 5). Uranium- and thorium-bearing minerals are the suspected sources of high concentrations of radium in ground water in other areas of the Atlantic Coastal Plain, including South Carolina (Michel and Moore, 1980), New Jersey (Kozinski and others, 1995; Szabo and others, 1997), and Georgia (Cline and others, 1983).

# Radium-224 and Short-Term Gross Alpha-Particle Activity

In March 1998, 23 wells with radium detections were resampled to confirm the high

concentrations of radium-226, radium-228 and gross alpha- and gross beta-particle activity. In addition, some wells were analyzed for radium-224 and both long-term (measured after about 30 days) and short-term (measured within three days) gross alpha-particle activity. Radium-224 is an alpha-emitting radionuclide in the thorium-232 decay series with a half-life of 3.64 days (fig. 5). The radium-226 and radium-228 concentrations from the Phase 1 samples (collected from September through December 1997) were similar to those collected during Phase 2 (March 1998). However, the short-term gross alpha-particle activities were much higher than the long-term gross alpha-particle activities: the average reduction in gross alpha-particle activity for the ten samples tested was 67 percent (range: 40 to 89 percent), indicating the presence of one or more short-lived alpha-emitting radionuclides (tab. 4). Short-term gross alphaparticle activities ranged from 25 to 919 pCi/L in untreated water samples. Radium-224 was detected in all six water samples in which it was analyzed (range: 0.65 to 30.2 pCi/L). In all six wells, the radium-224 concentration was greater than either the radium-226 or radium-228 concentration. Furthermore, radium-224 in three of the samples exceeded 5 pCi/L (the MCL for radium-226 plus radium-228). These data strongly suggest that radium-224 is a major component of total radium in ground water in the Magothy and Patapsco Formations in the central and northern parts of Anne Arundel County. Radium-224 was found to be a significant radium isotope in well water in southern New Jersey (New Jersey Department of Environmental Protection, 1997). The USEPA has not established drinking-water regulations for radium-224; this policy is currently under review (D. Huber, U.S. Environmental Protection Agency, 1998, oral commun.).

### Radon

لاس

Radon concentrations ranged from 106 to 989 pCi/L (median value: 292 pCi/L) (fig. 10).

# Table 4. Short-term and long-term gross alpha-particle activity and radium concentrations from Phase 2 sampling, and comparison to radium concentrations from Phase 1 sampling

[LTGA, long-term gross alpha-particle activity; STGA, short-term gross alpha-particle activity; pCi/L, picocuries per liter; -, not tested; NA, not applicable]

| Well                  | Phase 1<br>LTGA <sup>1</sup><br>(pCi/L) | Phase 2<br>STGA <sup>2</sup><br>(pCi/L) | Phase 2<br>LTGA <sup>2</sup><br>(pCi/L) | Percent<br>reduction in<br>STGA | Phase 1<br>radium-<br>226 <sup>1</sup><br>(pCi/L) | Phase 2<br>radium-<br>226 <sup>1</sup><br>(pCi/L) | Phase 1<br>radium-<br>228 <sup>1</sup><br>(pCi/L) | Phase 2<br>radium-<br>228 <sup>1</sup><br>(pCi/L) | Phase 2<br>radium-<br>224 <sup>3</sup><br>(pCi/L) | Phase 2<br>radium-224 <sup>4</sup><br>(pCi/L) |
|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| AA Bc 242             | 3.6                                     | -                                       | _                                       | NA                              | 1.4                                               | 1.7                                               | 2.7                                               | 2.6                                               | 3.1                                               | -                                             |
| AA Bd 165             | 12                                      | 58                                      | 13                                      | 78                              | 4.9                                               | 4.9                                               | 9.9                                               | 12                                                | -                                                 | -                                             |
| AA Bd 166             | 20                                      | 264                                     | 30                                      | 89                              | 6.7                                               | 6.4                                               | 17                                                | 17                                                | -                                                 |                                               |
| AA Be 115             | 12                                      | 25                                      | 7.0                                     | 72                              | 4.8                                               | 4.4                                               | 7.5                                               | 6.5                                               | _                                                 | -                                             |
| AA Be 116             | 29                                      | 101 <sup>s</sup>                        | 23 <sup>s</sup>                         | 77                              | 14                                                | 12                                                | 20                                                | 17                                                | -                                                 |                                               |
| AA Bf 64              | 18                                      | 110                                     | 36                                      | 67                              | 6.2                                               | 6.5                                               | 15                                                | 16                                                | 30.2                                              | _                                             |
| AA Bf 64 <sup>6</sup> | _                                       | 2.0                                     | <1                                      | NA                              | -                                                 | <0.1                                              | -                                                 | <1                                                | 1.1                                               | -                                             |
| AA Bf 65              | 30                                      | 155                                     | 41                                      | 74                              | 9.1                                               | 7.2                                               | 25                                                | 25                                                | -                                                 | -                                             |
| AA Bf 66              | 7.4                                     | 27                                      | 7.0                                     | 74                              | 3.1                                               | 3.4                                               | 5.0                                               | 5.1                                               | 8.2                                               | -                                             |
| AA Bf 68              | 110                                     | 919 <sup>3</sup>                        | 5305                                    | 42                              | 33                                                | 31                                                | 33                                                | 29                                                | _                                                 | -                                             |
| AA Bf 686             | -                                       | 9.0                                     | <8                                      | NA                              | -                                                 | <0.1                                              | -                                                 | <1                                                | -                                                 | -                                             |
| AA Cc 134             | 42                                      | 140                                     | 84                                      | 40                              | 9.7                                               | 7.6                                               | 11                                                | 11                                                | 18.9                                              | 18                                            |
| AA Cd 100             | 79                                      | 472                                     | 186                                     | 61                              | 31                                                | 33                                                | 35                                                | 32                                                | -                                                 | -                                             |
| AA De 211             | <3.0                                    | - 1                                     | _                                       | NA                              | <0.1                                              | 0.26                                              | <1.0                                              | 1.3                                               | 0.65                                              | -                                             |

<sup>1</sup> Analyzed by Quanterra Environmental Services (Richland, Washington).

<sup>2</sup> Analyzed by Maryland Department of Health and Mental Hygiene Radiation Laboratory (Baltimore, Maryland).

<sup>3</sup> Analyzed by New Jersey Department of Health and Senior Services Radioanalytical Services Laboratory (Trenton, New Jersey).

<sup>4</sup> Analyzed by U.S. Geological Survey Research Laboratory (Reston, Virginia).

<sup>3</sup> Average of duplicate samples.

<sup>6</sup> Sample was collected after well water had passed through water softener.

Radon tended to be higher in samples from wells in the Aquia Formation (median value: 328 pCi/L) than in samples from wells in the Magothy and Patapsco Formations (median value: 180 pCi/L) (fig. 12). Within the Aquia Formation, radon concentrations tended to be lowest in the southern part of the county, where the Aquia Formation contains a higher sand percentage than in central Anne Arundel County (Hansen, 1974, p. 20). Radon is the daughter product of radium-226 and has a half-life of 3.8 days. As is the case with almost all ground water (Wanty and Nordstrom, 1993), the radon concentrations from these samples are too high to have been generated solely by the decay of radium-226 dissolved in ground water, and most of the radon is assumed to have been derived from the decay of radium-226 located near the mineral surfaces (either sorbed or part of the crystal lattice). There is currently no proposed MCL for radon; a proposed MCL of 300 pCi/L was withdrawn in 1997. The American Water Works Association has recommended that utilities keep radon levels in finished water below 4,000 pCi/L (American Water Works Association, written commun., 1997).

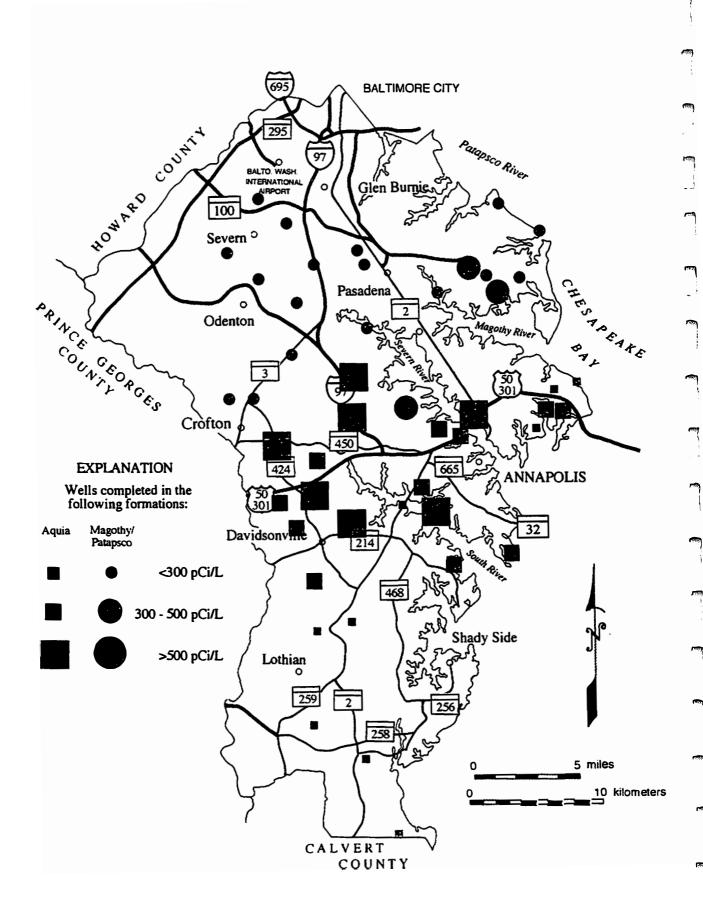



Figure 12. Distribution of radon in well water in Anne Arundel County. pCi/L, picocuries per liter.

#### Uranium

Uranium was detected in two wells in the Magothy Formation (2.4 and 14  $\mu$ g/L) and one well in the Patapsco Formation (1.1  $\mu$ g/L). Uranium is in cancer group A (human carcinogen) and has a proposed MCL of 20  $\mu$ g/L. All three wells had pH values less than 4.0, and two had specific conductance values greater than 1.000  $\mu$ S/cm. Most natural waters contain uranium in concentrations between 0.1 and 10  $\mu$ g/L (Hem, 1985). Uranium mobility is enhanced under oxidizing conditions and in carbonate-rich ground water. Bicarbonate (alkalinity) is abundant in ground water in the confined Aquia Formation in the southern part of the county, but most Aquia samples were anoxic, would reduce uranium mobility. which Conversely, many samples from the unconfined aquifers in the central and northern parts of the county were oxic, but had low alkalinities.

٢.

( | |

#### BACTERIA

Samples were analyzed for total coliform bacteria and *E. coli*. Twenty-one wells tested positive for total coliform bacteria; only one well (Cd 101, a dug well) tested positive for *E. coli*. Sixteen of the 27 wells in the Aquia Formation tested positive for total coliform bacteria; 5 of

the 20 wells in the Magothy and Patapsco Formations tested positive. Coliform bacteria have been widely used as an indicator of contamination from human sewage and are present in septic effluent (Yates and Yates, 1993). A higher proportion of positive detections of total coliform bacteria appear to be associated with the pesticide-targeted areas (13 of 20 samples positive) than with the VOC-targeted (6 of 20 samples positive) or radon-targeted areas (2 of 7 samples positive).

#### WATER-QUALITY DATA IN RELATION TO CANCER GROUPS

Water-quality data for constituents in cancer groups A (human carcinogens), B2 (probable human carcinogens), and C (possible human carcinogens) are summarized in table 5. Radium-226 plus radium-228 and gross alphaparticle activity were the most widespread carcinogens detected in the study. The only nonradionuclide constituents detected in cancer groups A, B2, and C were arsenic and chloroform, which were detected only in isolated cases. Constituents in cancer group D ("not classifiable; inadequate or no human and animal evidence of carcinogenicity," U.S. Environmental Protection Agency, 1996), are not included in table 5.

# Table 5. Summary of chemical constituents in cancer groups A, B2, and C

[None of the pilot study constituents was classified in cancer group B1. MCL, Maximum Contaminant Level; pCi/L, picocuries per liter; mrem/yr, millirems per year;  $\mu g/L$ , micrograms per liter; na, not applicable. Source of cancer group and MCL data: U.S. Environmental Protection Agency (1996)] i ang

į

ا ایش

|                                                                             |                            | Number of wells   |                                                                                                      |
|-----------------------------------------------------------------------------|----------------------------|-------------------|------------------------------------------------------------------------------------------------------|
|                                                                             |                            | exceeding MCL (47 |                                                                                                      |
| Constituent                                                                 | MCL                        | samples total)    | Comments                                                                                             |
| CANCER GROUP A: H                                                           | HUMAN CARCIN               | OGENS             |                                                                                                      |
| Radium-226 plus<br>radium-228                                               | 5 pCi/L                    | 15                | Highest concentrations found in low pH<br>(<5) well water in the Magothy and<br>Patapsco Formations. |
| Gross alpha-<br>particle activity                                           | 15 pCi/L                   | 6                 | Highest concentrations found in low pH<br>(<5) well water in the Magothy and<br>Patapsco Formations. |
| Beta-particle and<br>photon activity<br>(formerly man-made<br>radionuclides | 4 mrem/yr                  | 5                 | Highest concentrations found in low pH (<5) well water in the Magothy and Patapsco Formations.       |
| Uranium                                                                     | 20 μg/L <sup>1</sup>       | 0                 |                                                                                                      |
| Radon                                                                       | Not established            | na                | All samples less than 1,000 pCi/L.                                                                   |
| Benzene                                                                     | 5 μg/L                     | 0                 |                                                                                                      |
| Vinyl chloride                                                              | 2 μg/L                     | 0                 |                                                                                                      |
| Arsenic                                                                     | 50 μg/L <sup>3</sup>       | 1                 | Detection confirmed in second sample;<br>source of arsenic not identified.                           |
| CANCER GROUP B2:                                                            | PROBABLE HUM               | IAN CARCINOGENS   |                                                                                                      |
| Bromodichloro-<br>methane                                                   | 100/80 <sup>1,2</sup> μg/L | 0                 |                                                                                                      |
| Bromoform                                                                   | 100/80 <sup>1,2</sup> μg/L | 0                 |                                                                                                      |
| Carbon<br>tetrachloride                                                     | 5 μg/L                     | 0                 |                                                                                                      |
| Chloroform                                                                  | 100/80 <sup>1.2</sup> μg/L | 1                 | Well had been recently chlorinated.                                                                  |
| 1,2-dichloroethane                                                          | 5 μg/L                     | 0                 |                                                                                                      |
| 1,2-dichloro-<br>propane                                                    | 5 μg/L                     | 0                 |                                                                                                      |
| Methylene chloride<br>(dichloromethane)                                     | 5 μg/L                     | 0                 |                                                                                                      |
| Trichloroethylene                                                           | 5μg/L                      | 0                 |                                                                                                      |
| Beryllium                                                                   | 4 μg/L                     | 0                 |                                                                                                      |
| Lead                                                                        | 15 μg/L⁴                   | 0                 |                                                                                                      |

# Number of wells Number of wells exceeding MCL (47 Constituent MCL samples total) Comments CANCER GROUP C: POSSIBLE HUMAN CARCINOGENS Chlorodibromo 100/80<sup>1.2</sup> µg/L 0 1,1-dickloro 7 µg/L 0 ethylene 7 0

| Constituent                                            | MCL                        | exceeding MCL (47<br>samples total) | Comments                                                                  |
|--------------------------------------------------------|----------------------------|-------------------------------------|---------------------------------------------------------------------------|
| CANCER GROUP                                           | C: POSSIBLE HUMA           | N CARCINOGENS                       |                                                                           |
| Chlorodibromo-<br>methane                              | 100/80 <sup>1,2</sup> μg/L | 0                                   |                                                                           |
| 1,1-dichloro-<br>ethylene                              | 7 μg/L                     | 0                                   |                                                                           |
| 1,4-<br>dichlorobenzene                                | 75 μg/L                    | 0                                   |                                                                           |
| Methyl <i>tert</i> -butyl<br>ether (MTBE) <sup>6</sup> | not established            | na                                  |                                                                           |
| Atrazine                                               | 3μg/L                      | 0                                   |                                                                           |
| Metolachlor                                            | not established            | na                                  | One immunoassay detection; not detected in laboratory confirmation sample |
| Styrene                                                | 100 μg/L                   | 0                                   |                                                                           |

<sup>1</sup> Proposed MCL.

<sup>2</sup> Total for all trihalomethanes cannot exceed 80  $\mu$ g/L.

<sup>3</sup> Under review.

<sup>4</sup> Action level.

<sup>5</sup> MCL is a dosage that corresponds to different concentrations for different beta-emitting isotopes.

<sup>6</sup> Assignment to cancer group C is tentative.

# SUMMARY AND CONCLUSIONS

A pilot study of carcinogens in well water was conducted in Anne Arundel County, Maryland. The study focused on wells that are potentially at risk from carcinogens in well water, including: (1) wells near areas of commercial and industrial land use or dense residential development that are in the general outcrop areas of the Patapsco, Magothy, and Aquia Formations, where well water may be susceptible to contamination by VOCs; (2) wells near current and former cropland in the general outcrop areas of the Patapsco, Magothy, and Aquia Formations, where well water may be susceptible to contamination by pesticides; and (3) wells throughout Anne Arundel County (particularly in the confined Aquia Formation in the southern part of the county), where few data were available on radon and other naturally occurring radionuclides and trace elements that may be dissolved in the water. Untreated samples were collected from September through December 1997 from 47 wells, including 20 wells sampled in each of the VOC- and pesticidetargeted areas, and 7 wells in the radon-targeted area of the confined Aquia Formation. All samples were analyzed for a suite of VOCs, radium-226, radium-228, uranium, gross alphaand gross beta-particle activity, atrazine, metolachlor, arsenic, beryllium, lead, major ions, nutrients, and field parameters (pH, specific conductance, and dissolved oxygen).

Water samples were generally low in TDS (median: 113 mg/L). Samples from the Patapsco and Magothy Formations had lower median values of TDS, pH, calcium, alkalinity (bicarbonate), silica, iron, and manganese, and higher median values of sodium, chloride, nitrate, and dissolved oxygen compared to samples from the Aquia Formation. Three wells in the Magothy Formation and one well in the Patapsco Formation had pH values below 4.0, possibly as a result of pyrite oxidation. Nitrate concentrations exceeded 10 mg/L (the MCL) in 3 of the 47 samples. Anoxic conditions probably inhibit elevated nitrate concentrations. Chloride concentrations exceeded 250 mg/L (the secondary MCL for chloride) in samples from two wells. Iron concentrations exceeded 300  $\mu$ g/L (the secondary MCL) in 21 of 47 wells; 17 wells had more than 1,000  $\mu$ g/L iron.

There were several low-level detections of arsenic, beryllium, and lead; only one detection (arsenic; 110  $\mu$ g/L) exceeded the MCL. Three VOCs were detected (chloroform, detected in seven wells; bromodichloromethane and MTBE, each detected in one well); the chloroform detection exceeded the proposed MCL. Metolachlor was detected by immunoassay in one sample, but was not confirmed by GC/MS analysis; atrazine was undetected in all samples. Twenty-one wells tested positive for total coliform bacteria; only one well (a dug well) tested positive for *E. coli*.

Radium isotopes were the most commonly detected carcinogens in the study. Radium-226 plus radium-228 concentrations exceeded the MCL of 5 pCi/L in 15 of 20 samples in the Magothy and Patapsco Formations. There were no radium MCL exceedances in samples from the Aquia Formation. The high radium values from wells in the Magothy and Patapsco Formations were associated with low (<5) pH values: the highest values were from low-pH. high-TDS samples. Comparison of short-term (analyzed within 3 days of sampling) and longterm (analyzed approximately 30 days after sampling) gross alpha-particle activities from 10 samples indicated an average reduction in gross alpha values of 67 percent (range: 40-89 percent). Radium-224 was analyzed in six of these samples, and was detected in all six in concentrations greater than either radium-226 or radium-228. In conjunction with the short-term and long-term gross alpha-particle activity measurements, this strongly suggests that radium-224 is a major component of total radium in ground water in these aquifers. Radon concentrations ranged from 106 to 989 pCi/L (median: 292 pCi/L). Radon tended to be higher in samples from the Aquia Formation (median value: 328 pCi/L) than in samples from the Magothy and Patapsco Formations (median value: 180 pCi/L). Uranium was detected in samples from three wells (range of detections: 1.1-14  $\mu$ g/L); none exceeded the proposed MCL of 20  $\mu$ g/L.

**7**83)

1

ł

Radium is the only carcinogen analyzed in this study that exceeded the MCL over a widespread area of Anne Arundel County. The data are insufficient to determine the lateral and vertical extent of the high concentrations of radium, which are attributed to radioactive decay of naturally occurring uranium and thorium in the Patapsco and Magothy Formations. Furthermore, the data are not sufficient to determine all factors associated with the high radium values. Additional data are needed to investigate: (1) the lateral and vertical extent of radium contamination in ground water in the Patapsco and Magothy Formations in Anne Arundel County and the upper Chesapeake Bay region of Maryland; (2) the relationship between

well depth and radium concentration; (3) geochemical factors affecting the occurrence and distribution of radium in ground water; and (4) the extent to which radium-224 and other short-lived isotopes are present in the Patapsco and

Magothy Formations. A larger-scale study of the occurrence and distribution of radium in the Maryland Coastal Plain is currently (August 1998) being conducted to address these questions.

- Ames, L. L., McGarrah, J. E., and Walker,
  B. A., 1983a, Sorption of trace constituents from aqueous solutions onto secondary minerals. II. Radium: Clays and Clay Minerals, vol. 31, no. 5, p. 335-342.
- Ames, L. L., McGarrah, J. E., Walker, B. A., and Salter, P. F., 1983b, Uranium and radium sorption on amorphous ferric oxyhydroxide: Chemical Geology, vol. 40, p. 135-148.
- Anne Arundel County Advisory Task Force on Cancer Control, 1996, Final Report, vol. I: 79 p. with appendixes.
- Beneš, P., Strejc, P., and Lukavek, Z., 1984, Interaction of radium with freshwater sediments and their mineral components: I. Ferric hydroxide and quartz: Journal of Radioanalytical and Nuclear Chemistry, vol. 82, no. 2, p. 275-285.
- Bolton, D. W., 1998, Ground-water quality in the Piedmont region of Baltimore County, Maryland: Maryland Geological Survey Report of Investigations No. 66, 191 p.
- Canter, L. W., 1997, Nitrates in groundwater: Boca Raton, Florida, Lewis Publishers, 263 p.
- Cline, William, Adamovitz, Susan, Blackman, Clifford, and Kahn, Bernd, 1983, Radium and uranium concentrations in Georgia community water systems: Health Physics, vol. 44, no.1, p. 1-12.
- Daly, M. H., and Lindsey, B. D., 1996, Occurrence and concentrations of volatile organic compounds in shallow ground water in the lower Susquehanna River Basin, Pennsylvania and Maryland: U.S. Geological Survey Water-Resources Investigations Report 96-4141, 8 p.
- Drever, J. I., 1982, The geochemistry of natural waters: Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 388 p.
- Drummond, D. D., 1988, Hydrogeology, brackish-water occurrence, and simulation of

flow and brackish-water movement in the Aquia aquifer in the Kent Island area, Maryland: Maryland Geological Survey Report of Investigations No. 51, 131 p.

100

اش

í

- Eaton, A. D., Clesceri, L. S., and Greenberg, A. E., editors, 1995, Standard methods for the examination of water and wastewater (19th ed.): Washington, D.C., American Public Health Association, American Water Works Association, and the Water Environment Federation, 1,100 p.
- Fishman, L. M., 1993, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of inorganic and organic constituents in water and fluvial sediments: U.S. Geological Survey Open-File Report 93-125, 217 p.
- Fishman, L. M., and Friedman, L. C., editors, 1989, Methods for determination of inorganic substances in water and fluvial sediments, 3d ed.: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 545 p.
- Fleck, W. B., Andreasen, D. C., and Smith, B. S., 1996, Geohydrologic framework, ground-water quality and flow, and brackishwater intrusion in east-central Anne Arundel County, Maryland, with a section on simulation of brackish-water intrusion in the Aquia aquifer in the Annapolis area using a solute-transport model: Maryland Geological Survey Report of Investigations No. 62, 136 p.
- Glaser, J. D., 1969, Petrology and origin of Potomac and Magothy (Cretaceous) sediments, Middle Atlantic Coastal Plain: Maryland Geological Survey Report of Investigations No. 11, 101 p.
- \_\_\_\_\_, 1976, Geologic map of Anne Arundel County: Maryland Geological Survey, scale 1:62,500, 1 sheet.
- Gruessner, Barry, Shambaugh, N. C., and Watzin, M. C., 1995, Comparison of an

enzyme immunoassay and gas chromatography/mass spectrometry for the detection of atrazine in surface waters: Environmental Science and Technology, vol. 29, no. 1, p. 251-254.

- Hallberg, G. R., and Keeney, D. R., 1993, Nitrate, *in* Alley, W. M., editor, Regional ground-water quality: New York, New York, Van Nostrand Reinhold, p. 297-322.
- Hansen, H. J., 1972, A user's guide for the artesian aquifers of the Maryland Coastal Plain, Part two: Aquifer characteristics: Maryland Geological Survey, 123 p.
  - \_\_\_\_\_, 1974, Sedimentary facies of the Aquia Formation in the subsurface of the Maryland Coastal Plain: Maryland Geological Survey Report of Investigations No. 21, 47 p.
- Hansen, H. J., and Edwards, Jonathan, Jr., 1986, The lithology and distribution of pre-Cretaceous basement rocks beneath the Maryland Coastal Plain: Maryland Geological Survey Report of Investigations No. 44, 27 p.
- Hayes, M. C., Jourdan, S. W.and Herzog, D.
  P., 1996, Determination of atrazine in water by magnetic particle immunoassay: collaborative study: Journal of AOAC International, vol. 79, no. 2, p. 529-537.
- Hem, J. D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hiortdahl, S. N., 1990, Changes in ground-water quality caused by river-water intrusion in the Potomac Group aquifer system of northwestern Charles County, Maryland: Proceedings of eastern regional ground-water issues: National Water Well Association Conference, Springfield, Massachusetts, October 17, 1990, p. 391-404.
- Kozinski, Jane, Szabo, Zoltan, Zapecza, O. S., and Barringer, T. H., 1995, Natural radioactivity in, and inorganic chemistry of, ground water in the Kirkwood-Cohansey aquifer system, southern New Jersey, 1983-

89: U.S. Geological Survey Water-Resources Investigations Report 92-4144, 129 p.

- Langmuir, Donald, 1997, Aqueous environmental chemistry: Upper Saddle River, New Jersey, Prentice Hall, 600 p.
- Langmuir, Donald, and Riese, A. C., 1982, The mobility of radium in groundwater: Geological Society of America Abstracts with programs, vol. 14, p. 540-541.
- Lawruk, T. S., Lachman, C. E., Jourdan, S. W., Fleeker, J. R., Herzog, D. P., and Rubio, F. M., 1993, Determination of metolachlor in water and soil by a rapid magnetic particle-based ELISA: Journal of Agricultural and Food Chemistry, vol. 41, no. 9, p. 1426-1431.
- Li, Yuan-hui, Mathieu, Guy, Biscaye, Pierre, and Simpson, H. J., 1977, The flux of <sup>226</sup>Ra from estuarine and continental shelf sediments: Earth and Planetary Science Letters, vol. 37, p. 237-241.
- Maryland Department of Agriculture, 1996, Maryland pesticide statistics for 1994: MDA-265-96, 52 p.
- Michel, Jacqueline, and Moore, W. S., 1980, <sup>228</sup>Ra and <sup>226</sup>Ra content of groundwater in fall line aquifers: Health Physics, vol. 38, p. 663-671.
- National Atmospheric Deposition Program/National Trends Network, Colorado State University, accessed January 1996 at URL http://nadp.nrel.colostate.edu/nadp/
- New Jersey Department of Environmental Protection, 1997, A homeowner's guide to radioactivity in drinking water: 11 p.
- Otton, E. G., 1955, Ground-water resources of the southern Maryland Coastal Plain: Maryland Geological Survey Bulletin 15, 347 p.
- Pritt, J. W., and Raese, J. W., editors, 1995, Quality assurance/quality control manual, National Water Quality Laboratory: U.S. Geological Survey Open-File Report 95-443, 35 p.
- Squillace, P. J., Pope, D. A., and Price, C.

ر فننه 1

V., 1995, Occurrence of the gasoline additive MTBE in shallow ground water in urban and agricultural areas: U.S. Geological Survey Fact Sheet FS-114-95, 4 p.

- Szabo, Zoltan, Rice, D. E., MacLeod, C. L., and Barringer, T. H., 1997, Relation of distribution of radium, nitrate, and pesticides to agricultural land use and depth, Kirkwood-Cohansey aquifer system, New Jersey Coastal Plain, 1990-91: U.S. Geological Survey Water-Resources Investigations Report 96-4165A, 119 p.
- Tanner, A. B., 1964, Physical and chemical controls on distribution of radium-226 and radon-222 in ground water near Great Salt Lake, Utah, *in* Adams, J. A. S., and Lowder, W. M., editors, The Natural Radiation Environment: Chicago, Illinois, University of Chicago Press, p. 253-278.
- U.S. Environmental Protection Agency, 1992a, EPA facts about arsenic, *in* Common chemicals found at Superfund sites: EPA 540/R-94/044, 2 p.
- U.S. Environmental Protection Agency, 1992b, EPA facts about beryllium, *in* Common chemicals found at Superfund sites: EPA 540/R-94/044, 2 p.

- U. S. Environmental Protection Agency, 1994, Region III modifications to national functional guidelines for organic data review, multi-media, multi-concentration (OLMO1.0-OLMO1.9): September, 1994, 107 p. with appendixes.
- U.S. Environmental Protection Agency, 1996, Drinking water regulations and health advisories: Office of Water, EPA 822-B-96-002, 11 p.
- Viraraghavan, T., and Hashem, Simon, 1986, Trace organics in septic tank effluent: Water, Air, and Soil Pollution, vol. 28, p.299-308.
- Wanty, R. B., and Nordstrom, D. K., 1993, Natural radionuclides, *in* Alley, W.M., editor, Regional ground-water quality: New York, New York, Van Nostrand Reinhold, p. 423-441.
- Webster, I. T., Hancock, G. J., and Murray, A. S., 1995, Modelling the effect of salinity on radium desorption from sediments: Geochimica et Cosmochimica Acta, vol. 59, no. 12, p. 2469-2476.
- Yates, M. V., and Yates, S. R., 1993, Pathogens, *in* Alley, W.M., editor, Regional ground-water quality: New York, Van Nostrand Reinhold, p. 383-404.

### **APPENDIXES**

### APPENDIX A

# WATER-QUALITY DATA FROM WELLS SAMPLED IN THIS STUDY

Appendix A includes all water-quality data from Phase 1 of the pilot study except the VOC data. VOC detections are discussed in the "Volatile Organic Compounds" section of the report. All other VOC analyses were below the minimum reporting levels in appendix C1. The samples from wells AA Ec 11, AA Ed 56, and AA Ee 85 were determined to have passed through water-softening systems.

Abbreviations for unit concentrations:

| mg/L              | milligrams per liter                       |
|-------------------|--------------------------------------------|
| μg/L              | micrograms per liter                       |
| μS/cm             | microsiemens per centimeter at 25° Celsius |
| p-c units         | platinum-cobalt units                      |
| pCi/L             | picocuries per liter                       |
| 2 sigma           | total propagated error                     |
| CaCO <sub>3</sub> | calcium carbonate                          |
| SiO₂              | silica                                     |
| Ν                 | nitrogen                                   |

Abbreviations for targeted areas:

- P Pesticide-targeted area
- V VOC-targeted area
- R Radon-targeted area

### Abbreviations for bacteriological tests (Escherichia coli and total coliform bacteria):

| pos | positive test |
|-----|---------------|
| neg | negative test |

|                        |                  |          |                 | Specific            | Total dissolved    |                        |                 |
|------------------------|------------------|----------|-----------------|---------------------|--------------------|------------------------|-----------------|
|                        |                  | Targeted | Geologic        | conductance         | solids (residue at |                        | Alkalinity      |
| Well                   | Date sampled     | area     | formation       | (s/cm)کی <u>ر</u> ) | 180°C) (mg/L)      | pH                     | (mg/L as CaCO.) |
| AA Bc 242              | 10-Sep-97        | P        | Patapsco        | 57                  | 32                 | 4.6                    | 1               |
| AA Bc 243              | 12-Nov-97        | P        | Patapsco        | 97                  | 63                 | 4.9                    | 3               |
| AA Bc 244              | 17-Dec-97        | v        | Patapsco        | 393                 | 222                | 5.4                    | 11              |
| AA Bd 164              | 10-Sep-97        | P        | Patapsco        | 162                 | 92                 | 4.7                    | 1               |
| AA Bd 165              | 01-Oct-97        | <b>v</b> | Patapsco        | 222                 | 128                | 4.6                    | 4               |
| AA Bd 166              | 12-Nov-97        | P        | Patapsco        | 352                 | 192                | 4.1                    | <1              |
| AA Bd 167              | 20-Nov-97        | v        | Patapsco        | 130                 | 56                 | 4.5                    | <1              |
| AA Bd 168              | 16-Dec-97        | P        | Patapsco        | 26                  | 15                 | 4.9                    | 2               |
| AA Be 115              | 08-Oct-97        | v        | Patapsco        | 139                 | 74                 | 4.2                    | 3               |
| AA Be 116              | 08-Oct-97        | v        | Patapsco        | 209                 | 113                | 4.0                    | <1              |
| AA Bf 64               | 09-Sep-97        | P        | Magothy         | 222                 | 94                 | 3.5                    | <1              |
| AA Bf 65               | 30-Sep-97        | v        | Patapsco        | 178                 | 74                 | 3.7                    | <1              |
| AA Bf 66               | 08-Oct-97        | v        | Patapsco        | 162                 | 80                 | 4.3                    | <1              |
| AA Bf 67               | 19-Nov-97        | v        | Patapsco        | 150                 | 84                 | 4.7                    | 9               |
| AA B£ 68               | 17-Dec-97        | v        | Magothy         | 1290                | -                  | 3.8                    | <1              |
| AA Cc 133              | 16-Sep-97        | P        | Patapsco        | 26                  | 22                 | 4.3                    | 1               |
| AA Cc 134              | 23-Oct-97        | v        | Magothy         | 686                 | 320                | 3.7                    | <1              |
| AA Cd 100              | 16-Sep-97        | P        | Magothy         | 1020                | 493                | 4.1                    | <1              |
| AA Cd 101              | 02-Dec-97        | v        | Aquia           | 180                 | 121                | 4.9                    | 16              |
| AA Cd 104              | 03-Dec-97        | v        | Patapsco        | 362                 | 190                | 4.1                    | <1              |
| AA Cd 105              | 15-Dec-97        | P        | Aquia           | 349                 | 263                | 5.0                    | 13              |
| AA Ce 141              | 04-Nov-97        | R        | Magothy         | 100                 | 103                | 5.9                    | 23              |
| AA Ce 142              | 16-Dec-97        | P        | Aquia           | 65                  | 52                 | 4.8                    | 3               |
| AA Cf 145              | 30-Sep-97        | P        | Aquia           | 136                 | 62                 | 6.3                    | 52              |
| AA Cf146               | _01-Oct-97       | P        | Aguia           | 263                 | 122                | 5.9                    | 46              |
| AA Cf147               | 21-Oct-97        | v        | Aquia           | 145                 | 108                | 5.7                    | 36              |
| AA Cf 148              | 19-Nov-97        | P        | Aquia           | 138                 | 88                 | 5.6                    | 16              |
| AA Cf 149              | 03-Dec-97        | v        | Aquia           | 63                  | 84                 | 4.7                    | <1              |
| AA Cg 26               | 21-Oct-97        | v        | Aquia           | 155                 | 87                 | 5.9                    | 25              |
| AA Dc 18               | 10-Dec-97        | v        | Aquia           | 558                 | 353                | 4.1                    | <1              |
| AA Dd 51               | 30-Sep-97        |          | Aquia           | 240                 | 194                | 7.3                    | 93              |
| AA Dd 51               | 17-Sep-97        | P        | Aquia           | 240                 | 164                | 7.2                    | 93              |
| AA Dd 53               | 22-Sep-97        | P        | Aquia           | 217                 | 158                | 6.1                    | 34              |
| AA Dd 55               | 17-Sep-97        | P        | Aquia           | 106                 | 76                 | 5.9                    | 34<br>47        |
| AA Dd_55               | 22-Sep-97        | P        | Aquia           | 124                 | 70<br>70           | 6.3                    | 47              |
| AA Dd 57               | 25-Sep-97        | <br>P    | Aquia           | 162                 | 111                | 4.8                    | 2               |
| AA De 209              | 25-Sep-97        | P        | Aquia           | 221                 | 113                | 4.9                    | 6               |
| AA De 209<br>AA De 210 | 20-Nov-97        | r<br>V   | Aquia<br>Aquia  | 58                  | 30                 | 4. <del>7</del><br>4.7 | <1              |
| AA De 210<br>AA De 211 | 11-Dec-97        | v        | Aquia           | 319                 | 207                | 4.7                    | 5               |
| AA De 211<br>AA De 212 | 02-Dec-97        | v        | Aquia<br>Aguia  | 164                 | 153                | 4.0<br>6.6             | 126             |
| AA Ec 11 <sup>1</sup>  |                  |          |                 | 279                 |                    |                        |                 |
| AA EC 11°<br>AA Ed 54  | 23-Oct-97        | R        | Magothy         |                     | 191                | 6.8                    | 119             |
|                        | 13-Nov-97        | R        | Aquia<br>A quia | 350                 | 238                | 7.2                    | 176             |
| AA Ed 56 <sup>1</sup>  | 27-Oct-97        | R        | Aquia<br>A quia | 409                 | 271                | 7.5                    | 168             |
| AA Ed 57               | 04-Nov-97        | R        | Aquia           | 322                 | 200                | 6.8<br>7.6             | 157             |
| AA Ee 851              | <u>27-Oct-97</u> | <u> </u> | Aguia           | 337                 | 217                | 7.6                    | 184             |
| AA Ee 86<br>AA Ef 39   | 04-Nov-97        | R        | Aquia           | 578                 | 355                | 6.7                    | 199             |
|                        | 22-Dec-97        | V        | Aquia           | 411                 | 301                | 6.8                    | 192             |
| AA Fd 54               | 03-Nov-97        | R        | Aquia<br>A quia | 298                 | 179                | 7.7                    | 191             |
| AA Fd 55               | 28-Oct-97        | R        | Aquia           | 313                 | 189                | 7.6                    | 121             |
| AA Ge 14               | 03-Nov-97        | <u> </u> | Aguia           | 282                 | 159                | 7.7                    | 200             |

Appendix A. Water-quality data from wells sampled in this study

ι....

λ.

- î - k

أهيب

أجمع

أهلنا

أس

í.

1

ز {ني

2

Ś

<sup>1</sup> Treated sample.

|                       | Dissolved<br>oxygen | Calcium     | Magnesium  | Sodium                                                                                                          | Potassium  | Chloride     | Sulfate   |
|-----------------------|---------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------|------------|--------------|-----------|
| Wel 1                 | (mg/L)              | (mg/L)      | (mg/L)     | (mg/L)                                                                                                          | (mg/L)     | (mg/L)       | (mg/L)    |
| AA Bc 242             | 7.8                 | 2.1         | 0.97       | 2.7                                                                                                             | 1.2        | 5.4          | 0.97      |
| A Bc 243              | 8.1                 | 3.0         | 2.8        | 6.5                                                                                                             | 1.6        | 14           | 5.0       |
| AA Bc 244             | 8.0                 | 19          | 2.9        | 46                                                                                                              | 6.6        | 82           | 22        |
| AA Bd 164             | 7.0                 | 8.0         | 3.7        | 6.5                                                                                                             | 7.7        | 15           | 18        |
| AA Bd 165             | 7.9                 | 11          | 2.9        | 19                                                                                                              | 2.8        | 34           | 20        |
| AA Bd 166             | 9.3                 | 22          | 6.7        | 16                                                                                                              | 8.7        | 34           | 46        |
| AA Bd 167             | 8.3                 | 5.5         | 3.0        | 9.0                                                                                                             | 1.1        | -            |           |
| AA Bd 168             | 8.1                 | 0.96        | 0.39       | 1.3                                                                                                             | 0.45       | 3.2          | 0.19      |
| AA Be 115             | 5.6                 | 3.0         | 4.0        | 11                                                                                                              | 1.3        | 20           | 17        |
| AA Be 116             | 4.3                 | 6.5         | 3.4        | 16                                                                                                              | 2.2        | 19           | 9.1       |
| AA Bf 64              | 1.0                 | 3.3         | 3.8        | 10                                                                                                              | 2.2        | 20           | 44        |
| AA BI 65              | 5.8                 | 3.3<br>0.97 | 2.6        |                                                                                                                 |            | 20           | 38        |
| AA BI 65<br>AA BI 66  | 2.8                 | 2.9         |            | 12                                                                                                              | 1.4        | 33           |           |
| AA BI 60              | 7.5                 | 6.5         | 3.4<br>3.5 | 16<br>15                                                                                                        | 1.3<br>2.2 | 21           | 3.4<br>11 |
| AA BI 67<br>AA BI 68  | 1.4                 | 0.5<br>9.4  | 5.5<br>6.9 | 15                                                                                                              | 2.2<br>6.5 | 310          | 110       |
|                       |                     |             |            | a second seco |            |              |           |
| AA Cc 133             | 0.7                 | 0.36        | 0.15       | 1.0                                                                                                             | 0.4        | 1.3          | 5.7       |
| AA Cc 134             | 0.4                 | 3.5         | 3.4        | 89                                                                                                              | 4.8        | 140          | 58        |
| AA Cd 100             | 9.2                 | 8.9         | 15         | 130                                                                                                             | 5.4        | 290          | 9.3       |
| AA Cd 101             | 5.3                 | 8.6         | 3.5        | 20                                                                                                              | 2.3        | 27           | 22        |
| AA Cd 104             | 8.1                 | 5.8         | 4.5        | 55                                                                                                              | 1.8        | 94           | 13        |
| AA Cd 105             | 8.6                 | 24          | 9.6        | 25                                                                                                              | 5.2        | 57           | 1.1       |
| AA Ce 141             | 0.3                 | 5.9         | 2.1        | 2.1                                                                                                             | 3.1        | 2.2          | 13        |
| AA Ce 142             | 3.0                 | 2.0         | 1.1        | 2.4                                                                                                             | 3.7        | 6.6          | 9.2       |
| AA Cf 145             | <1.0                | 5.1         | 4.5        | 4.2                                                                                                             | 5.3        | 6.1          | 2.8       |
| AA Cf 146             | 0.5                 | 12          | 4.5        | 5.1                                                                                                             | 3.1        | 43           | 14        |
| AA Cf 147             | 0.6                 | 4.2         | 2.2        | 5.0                                                                                                             | 3.1        | 16           | 9.1       |
| AA Cf 148             | 5.4                 | 12          | 2.8        | 12                                                                                                              | 1.5        | 16           | 15        |
| AA Cf 149             | 6.6                 | 1.7         | 1.5        | 2.4                                                                                                             | 3.8        | 7.7          | 8.2       |
| AA Cg 26              | 0.5                 | 6.2         | 2.7        | 3.3                                                                                                             | 2.4        | 19           | 18        |
| AA Dc 18              | 8.4                 | 32          | 17         | 39                                                                                                              | 7.8        | 180          | 0.58      |
| AA Dd 51              | 0.6                 | 48          | 1.2        | 2.0                                                                                                             | 3.6        | 4.3          | 21        |
| AA Dd 52              | 0.5                 | 45          | 0.75       | 0.97                                                                                                            | 1.8        | 7.1          | 22        |
| AA Dd 53              | <1.0                | 5.2         | 1.6        | 2.9                                                                                                             | 3.3        | 0.14         | <0.10     |
| AA Dd 54              | 1.3                 | 7.0         | 2.3        | 1.2                                                                                                             | 3.1        | 4.7          | 1.6       |
| AA Dd 55              | 0.5                 | 5.0         | 1.3        | 1.4                                                                                                             | 2.8        | 2.7          | 26        |
| AA Dd 57              | 8.6                 | 14          | 3.1        | 2.7                                                                                                             | 5.5        | 16           | 22        |
| AA De 209             | 4.1                 | 12          | 3.4        | 4.0                                                                                                             | 6.2        | 32           | 2.4       |
| AA De 210             | 1.7                 | 0.88        | 1.1        | 2.4                                                                                                             | 3.3        | 4.0          | 12        |
| AA De 211             | 4.1                 | 17          | 6.2        | 20                                                                                                              | 6.2        | 78           | 1.2       |
| AA De 212             | 1.0                 | 30          | 1.1        | 1.2                                                                                                             | 2.7        | 1.6          | 8.1       |
| AA Ec 11 <sup>1</sup> | 0.4                 | 0.4         | 0.056      | 63                                                                                                              | 0.78       | 2.3          | 14        |
| AA Ed 54              | 0.4                 | 61          | 5.3        | 2.6                                                                                                             | 3.9        | 3.0          | 8.0       |
| AA Ed 56 <sup>1</sup> | 0.4                 | 0.55        | 0.071      | 97                                                                                                              | 0.29       | 2.0          | 24        |
| AA Ed 57              | 0.4                 | 50          | 8.0        | 2.3                                                                                                             | 3.9        | 1.6          | 40        |
| AA Ee 85'             | 0.3                 | 0.025       | <0.01      | 2.3<br>77                                                                                                       | 0.45       | 1.0          | 40        |
|                       |                     |             |            |                                                                                                                 |            | 75           |           |
| AA Ee 86              | 0.8                 | 94<br>79    | 3.5        | 9.0                                                                                                             | 4.4        | 75<br>31     | 5.7       |
| AA Ef 39              | 2.8                 | 78          | 2.4        | 6.5                                                                                                             | 4.5        |              | 1.4       |
| AA Fd 54              | 0.3                 | 43          | 8.3        | 2.9                                                                                                             | 5.1        | 1.0          | 29<br>26  |
| AA Fd 55<br>AA Ge 14  | 0.5<br>0.3          | 45          | 9.1<br>11  | 2.9                                                                                                             | 5.4<br>9.4 | 0.61<br>0.75 | 26<br>5.9 |

Appendix A. Water-quality data from wells sampled in this study -- Continued

' Treated sample.

ł

ł

}

ł

ł

t

| Well                 | Fluoride<br>(mg/L) | Silica<br>(mg/L as<br>SiQ <sub>2</sub> ) | Color<br>(p-c units) | Iron (filtered)<br>(µg/L) | Iron<br>(unfiltered)<br>(ug/L) | Manganese<br>(filtered)<br>(µg/L) | Manganese<br>(unfiltered)<br>(µg/L) |
|----------------------|--------------------|------------------------------------------|----------------------|---------------------------|--------------------------------|-----------------------------------|-------------------------------------|
| AA Bc 242            | < 0.10             | 7.4                                      | <1                   | <3.0                      | <10                            | 15                                | 18                                  |
| AA Bc 243            | < 0.10             | 7.5                                      | <1                   | <3.0                      | <10                            | 17                                | 14                                  |
| AA Bc 244            | < 0.10             | 6.0                                      | 2                    | <10                       | 30                             | 25                                | 26                                  |
| AA Bd 164            | < 0.10             | 7.5                                      | <1                   | <10                       | 10                             | 90                                | 92                                  |
| AA Bd 165            | < 0.10             | 7.1                                      | 1                    | <10                       | 20                             | 64                                | 66                                  |
| AA Bd 166            | 0.24               | 6.3                                      | <1                   | 120                       | 160                            | 263                               | 250                                 |
| AA Bd 167            | < 0.10             | 6.9                                      | <1                   | <3.0                      | <10                            | 19                                | 13                                  |
| AA Bd 168            | < 0.10             | 8.2                                      | 1                    | <10                       | <10                            | 4.2                               | <10                                 |
| AA Be 115            | < 0.10             | 10                                       | <1                   | 35                        | 40                             | 36                                | 31                                  |
| AA Be 116            | 0.18               | 11                                       | <1                   | 14                        | 20                             | 15                                | 13                                  |
| AA Bf 64             | < 0.10             | 16                                       | 1                    | 1700                      | 1700                           | 29                                | 42                                  |
| AA Bf 65             | <0.10              | 14                                       | <1                   | 88                        | 70                             | 17                                | <10                                 |
| AA Bf 66             | < 0.10             | 10                                       | <1                   | 3.2                       | 10                             | 80                                | 72                                  |
| AA Bf 67             | < 0.10             | 7.4                                      | <1                   | <3.0                      | <10                            | 73                                | 68                                  |
| AA Bf 68             | < 0.10             | 11                                       | 4                    | 7400                      | 7700                           | 105                               | 100                                 |
| AA Cc 133            | < 0.10             | 9.9                                      | 8                    | 1500                      | 1400                           | 7.6                               | 14                                  |
| AA Cc 134            | < 0.10             | 9.3                                      | 2                    | 2800                      | 2900                           | 25                                | 23                                  |
| AA Cd 100            | 0.11               | 13                                       | 10                   | 13                        | 10                             | 448                               | 460                                 |
| AA Cd 101            | <0.10              | 22                                       | 2                    | 55                        | 140                            | 28                                | 29                                  |
| AA Cd 104            | <0.10              | 9                                        | <1                   | 29                        | 20                             | 26                                | 28                                  |
| AA Cd 105            | 0.23               | 17                                       | 1                    | <10                       | <10                            | 75                                | 72                                  |
| AA Ce 141            | 0.30               | 51                                       | 110                  | 9000                      | 7800                           | 161                               | 97                                  |
| AA Ce 142            | <0.10              | 23                                       | 10                   | 1100                      | 1900                           | 73                                | 60                                  |
| AA Cf 145            | 0.61               | 27                                       | 160                  | 14700                     | 14000                          | 112                               | 94                                  |
| AA Cf 146            | 0.28               | 21                                       | 4                    | 30900                     | 33000                          | 488                               | 510                                 |
| AA Cf 147            | 0.14               | 31                                       | 100                  | 17000                     | 17000                          | 173                               | 140                                 |
| AA Cf 148            | <0.10              | 17                                       | 1                    | 18                        | 70                             | 34                                | 30                                  |
| AA Cf 149            | <0.10              | 21                                       | 13                   | 1000                      | 1800                           | 36                                | 34                                  |
| AA Cg 26             | 0.11               | 26                                       | 25                   | 15700                     | 17000                          | 378                               | 350                                 |
| AA Dc 18             | 0.31               | 20                                       | <1                   | 12                        | 60                             | 95                                | 96                                  |
| AA Dd 51             | 0.12               | 46                                       | 10                   | 790                       | 850                            | 15                                | 15                                  |
| AA Dd 52             | <0.10              | 25                                       | 4                    | 610                       | 690                            | 11                                | 17                                  |
| AA Dd 53             | 0.13               | 25                                       | 10                   | 41300                     | 42000                          | 359                               | 280                                 |
| AA Dd 54             | 0.33               | 19                                       | 12                   | 11200                     | 12000                          | 329                               | 330                                 |
| AA Dd 55             | 0.32               | 23                                       | 20                   | 21600                     | 23000                          | 145                               | 120                                 |
| AA Dd 57             | <0.10              | 20                                       | 1                    | 11                        | 320                            | 234                               | 220                                 |
| AA De 209            | 0.14               | 22                                       | <1                   | 140                       | 150                            | 173                               | 170                                 |
| AA De 210            | <0.10              | 20                                       | <1                   | 1100                      | 1200                           | 152                               | 93                                  |
| AA De 211            | <0.10              | 41                                       | <1                   | 55                        | 60                             | 53                                | 53                                  |
| AA De 212            | 0.30               | 30                                       | 55                   | 3200                      | 3600                           | 30                                | 34                                  |
| AA Ec 11'            | 0.36               | 29                                       | 1                    | 74                        | 80                             | 2.3                               | <10                                 |
| AA Ed 54             | 0.18               | 37                                       | 2                    | 380                       | 550                            | 37                                | 34                                  |
| AA Ed 56'            | 0.19               | 27                                       | 1                    | 8.3                       | 10                             | <1.0                              | <10                                 |
| AA Ed 57             | 0.15               | 18                                       | 7                    | 4500                      | 4400                           | 38                                | 39                                  |
| AA Ec 851            | 0.22               | 20                                       | 1                    | 8.3                       | 20                             | <1.0                              | <10                                 |
| AA Ee 86             | 0.11               | 18                                       | 1                    | 56                        | 60                             | 8.9                               | 10                                  |
| AA Ef 39             | 0.16               | 40                                       | 2                    | 120                       | 130                            | 15                                | 14                                  |
| AA Fd 54             | 0.19               | 14                                       | 3                    | 210                       | 220                            | 8                                 | < 10                                |
| AA Fd 55<br>AA Ge 14 | 0.25<br>0.28       | 17<br>14                                 | 3<br>3               | 270<br>260                | 300<br>280                     | 30<br>5.8                         | 28<br><10                           |

Appendix A. Water-quality data from wells sampled in this study -- Continued

اس.

ا أس

(internet)

146

أنصبا

فت

ر آسم

i

اي ا

! (میں

<u>ا</u>

**6**00

لمتعه

<sup>1</sup> Treated sample.

| Appendix A. V | Water-quality dat | a from wells sample | d in this study | y Continued |
|---------------|-------------------|---------------------|-----------------|-------------|
|---------------|-------------------|---------------------|-----------------|-------------|

| Well                  | Lead   | Arsenic | Beryllium | $NO_3 + NO_2$ | Ammonia     | Total     | Escherichi |
|-----------------------|--------|---------|-----------|---------------|-------------|-----------|------------|
|                       | (µg/L) | (µg/L)  | (µg/L)    | (mg/L as N)   | (mg/L as N) | Coliforms | coli       |
| AA Bc 242             | <1     | <1      | <2.0      | 3.0           | <0.2        | pos       | neg        |
| AA Bc 243             | 2      | <1      | <2.0      | 2.9           | <0.2        | neg       | neg        |
| AA Bc 244             | 2      | <1      | <2.0      | 5.7           | <0.2        | neg       | neg        |
| AA Bd 164             | 6      | <1      | <2.0      | 6.4           | <0.2        | pos       | neg        |
| AA Bd 165             | <1     | <1      | <2.0      | 6.3           | 0.2         | pos       | neg        |
| AA Bd 166             | 3      | <1      | 2.6       | 13            | <0.2        | neg       | neg        |
| AA Bd 167             | 2      | <1      | <2.0      | 7.0           | <0.2        | neg       | neg        |
| AA Bd 168             | 8      | <1      | <2.0      | 0.3           | <0.2        | pos       | neg        |
| AA Be 115             | <1     | <1      | <2.0      | 2.2           | 0.2         | neg       | neg        |
| AA Be 116             | 5      | <1      | <2.0      | 11.4          | < 0.2       | neg       | neg        |
| AA Bf 64              | <1     | 4       | <2.0      | <0.2          | < 0.2       | neg       | neg        |
| AA Bf 65              | 1      | <1      | <2.0      | 0.4           | 0.2         | neg       | neg        |
| AA Bf 66              | 2      | <1      | <2.0      | 2.4           | <0.2        | neg       | neg        |
| AA Bf 67              | 1      | <1      | 3.1       | 6.8           | <0.2        | neg       | neg        |
| AA Bf 68              | 2      | 46      | <2.0      | 2.3           | 0.7         | neg       | neg        |
| AA Cc 133             | 1      | <1      | <2.0      | <0.2          | < 0.2       | neg       | neg        |
| AA Cc 134             | <1     | 110     | <2.0      | <0.2          | 3.2         | neg       | neg        |
| AA Cd 100             | <1     | <1      | <2.0      | 1.4           | <0.2        | pos       | neg        |
| AA Cd 101             | 1      | <1      | 2.0       | 3.6           | <0.2        | pos       | pos        |
| AA Cd 104             | <1     | <1      | <2.0      | 4.2           | <0.2        | neg       | neg        |
| AA Cd 105             | <1     | <1      | <2.0      | 20.5          | < 0.2       | pos       | neg        |
| AA Ce 141             | <1     | <1      | 2.1       | <0.2          | <0.2        | neg       | neg        |
| AA Ce 142             | 4      | <1      | <2.0      | 0.6           | <0.2        | neg       | neg        |
| AA Cf 145             | <1     | 1       | <2.0      | <0.2          | 0.3         | pos       | neg        |
| AA Cf 146             | <1     | <1      | <2.0      | <0.2          | <0.2        | pos       | neg        |
| AA Cf 147             | <1     | <1      | <2.0      | <0.2          | <0.2        | pos       | neg        |
| AA Cf 148             | <1     | <1      | <2.0      | 2.9           | <0.2        | neg       | neg        |
| AA Cf 149             | 4      | <1      | <2.0      | 0.3           | <0.2        | neg       | neg        |
| AA Cg 26              | <1     | 1       | <2.0      | <0.2          | <0.2        | pos       | neg        |
| AA Dc 18              | 12     | <1      | <2.0      | 1.2           | <0.2        | neg       | neg        |
| AA Dd 51              | <1     | <1      | <2.0      | <0.2          | < 0.2       | pos       | neg        |
| AA Dd 52              | <1     | <1      | <2.0      | <0.2          | <0.2        | pos       | neg        |
| AA Dd 53              | <1     | <1      | <2.0      | <0.2          | 0.3         | pos       | neg        |
| AA Dd 54              | <1     | <1      | <2.0      | <0.2          | <0.2        | pos       | neg        |
| AA Dd 55              | <1     | <1      | <2.0      | < 0.2         | 0.2         | pos       | neg        |
| AA Dd 57              | 2      | <1      | <2.0      | 4.1           | 0.2         | neg       | neg        |
| AA De 209             | 2      | <1      | <2.0      | 2.3           | < 0.2       | pos       | neg        |
| AA De 210             | 2      | <1      | <2.0      | 0.5           | <0.2        | pos       | neg        |
| AA De 211             | 4      | <1      | <2.0      | 2.4           | <0.2        | neg       | neg        |
| AA De 212             | <1     | <1      | <2.0      | <0.2          | <0.2        | pos       | neg        |
| AA Ec 11 <sup>1</sup> | <1     | <1      | <2.0      | <0.2          | < 0.2       | pos       | neg        |
| AA Ed 54              | <1     | <1      | <2.0      | <0.2          | <0.2        | pos       | neg        |
| AA Ed 56 <sup>1</sup> | <1     | <1      | <2.0      | <0.2          | <0.2        | neg       | neg        |
| AA Ed 57              | <1     | <1      | <2.0      | <0.2          | <0.2        | neg       | neg        |
| AA Ec 85 <sup>1</sup> | <1     | <1      | 2.4       | <0.2          | <0.2        | neg       | neg        |
|                       |        |         |           |               |             |           |            |
| AA Ee 86              | <1     | <1      | 3.0       | 6.3           | < 0.2       | pos       | neg        |
| AA Ef 39              | <1     | <1      | <2.0      | < 0.2         | < 0.2       | neg       | neg        |
| AA Fd 54              | <1     | <1      | <2.0      | < 0.2         | < 0.2       | neg       | neg        |
| AA Fd 55              | <1     | <1      | <2.0      | <0.2          | <0.2        | neg       | neg        |

<sup>1</sup> Treated sample.

}

1

ł

ł

ł

£

ł

Į

|                                   |                  |                       |            | D. 4               | Gross alpha-         | Casas alaba            | Gross beta-          |                       |
|-----------------------------------|------------------|-----------------------|------------|--------------------|----------------------|------------------------|----------------------|-----------------------|
|                                   | Atrazine         | Metolachlor           | Radon      | Radon<br>2 sigma   | particle<br>activity | Gross alpha<br>2 sigma | particle<br>activity | Gross beta<br>2 sigma |
| Well                              | (µg/L)           | Metolachior<br>(μg/L) | (pCi/L)    | 2 sigma<br>(pCi/L) | (pCi/L)              | 2 sigma<br>(pCi/L)     | (pCi/L)              | 2 sigma<br>(pCi/L)    |
| AA Bc 242                         | < 0.05           | < 0.05                | 136        | 19                 | 3.6                  | 2.0                    | 4.8                  | 3.7                   |
| AA Bc 243                         | < 0.05           | < 0.05                | 290        | 21                 | 3.8                  | 2.0                    | 4.8                  | 3.8                   |
| AA Bc 244                         | < 0.05           | < 0.05                | 128        | 17                 | 7.3                  | 2.9                    | 22                   | 4.6                   |
| AA Bd 164                         | < 0.05           | < 0.05                | 237        | 22                 | 12                   | 3.4                    | 25                   | 4.6                   |
| AA Bd 165                         | < 0.05           | < 0.05                | 164        | 18                 | 12                   | 3.4                    | 23                   | 4.6                   |
| AA Bd 166                         | < 0.05           | 0.2                   | 168        | 10                 | 20                   | 4.4                    | 39                   | 5.2                   |
| AA Bd 160<br>AA Bd 167            | < 0.05           | < 0.05                | 187        | 19                 | 20<br>7.6            | 2.7                    | 15                   | 4.2                   |
| AA Bd 168                         | < 0.05           | < 0.05                | 135        | 18                 | <3.0                 | 1.4                    | <4.0                 | 3.5                   |
| AA Be 115                         | < 0.05           | < 0.05                | 305        | 22                 | 12                   | 3.5                    | 18                   | 4.4                   |
| AA Be 116                         | < 0.05           | < 0.05                | 193        | 19                 | 29                   | 5.2                    | 36                   | 5.1                   |
| AA Bf 64                          | < 0.05           | < 0.05                | 210        | 20                 | 18                   | 4.0                    | 26                   | 4.7                   |
| AA Bf 65                          | < 0.05           | < 0.05                | 172        | 20                 | 30                   | 5.1                    | 51                   | 5.6                   |
| AA Bf 66                          | < 0.05           | < 0.05                | 110        | 18                 | 7.4                  | 2.9                    | 9.0                  | 4.0                   |
| AA BI 60<br>AA BI 67              | < 0.05           | < 0.05                | 173        | 18                 | 9.0                  | 2.9                    | 13                   | 4.2                   |
| AA Bf 68                          | < 0.05           | < 0.05                | 436        | 23                 | 110                  | 14                     | 88                   | 7.1                   |
| AA Cc 133                         | < 0.05           | < 0.05                | 106        | 17                 | <3.0                 | 1.1                    | <4.0                 | 3.6                   |
| AA Cc 133                         | < 0.05           | < 0.05                | 206        | 20                 | 42                   | 5.6                    | 36                   | 3.3                   |
| AA Cd 100                         | < 0.05           | < 0.05                | 200        | 20<br>19           | 79                   | 10                     | 80                   | 6.8                   |
| AA Cd 100                         | < 0.05           | < 0.05                | 590        | 25                 | <3.0                 | 1.6                    | <4.0                 | 3.7                   |
| AA Cd 104                         | < 0.05           | < 0.05                | 130        | 18                 | 9.1                  | 3.2                    | 22                   | 4.6                   |
| AA Cd 105                         | < 0.05           | < 0.05                | 536        | 24                 | <3.0                 | 1.9                    | <4.0                 | 3.8                   |
| AA Ce 105                         | < 0.05           | < 0.05                | 331        | 24 21              | <3.0                 | 1.5                    | 4.3                  | 3.8                   |
| AA Ce 141                         | < 0.05           | < 0.05                | 396        | 23                 | <3.0                 | 1.5                    | <b>4</b> .5<br>5.0   | 3.8                   |
| AA Cf 142                         | < 0.05           | < 0.05                | 315        | 23                 | <3.0                 | 1.2                    | 6.9                  | 3.9                   |
| AA Cf 145                         | < 0.05           | < 0.05                | 237        | 20                 | <3.0                 | 1.5                    | <4.0                 | 3.9                   |
| AA Cf 147                         | < 0.05           | < 0.05                | 328        | 20                 | <3.0                 | 1.4                    | 5.9                  | 4.0                   |
| AA Cf 147                         | < 0.05           | < 0.05                | 149        | 18                 | <3.0                 | 1.5                    | 4.0                  | 4.0<br>3.7            |
| AA Cf 149                         | < 0.05           | < 0.05                | 512        | 24                 | <3.0                 | 1.2                    | <b>4</b> .0<br><4.0  | 3.7                   |
| AA Cg 26                          | < 0.05           | < 0.05                | 292        | 24                 | <3.0                 | 1.5                    | <4.0<br><4.0         | 3.7                   |
| AA Dc 18                          | < 0.05           | < 0.05                | 989        | 31                 | 3.8                  | 2.5                    | 8.7                  | 4.1                   |
| AA Dd 51                          | < 0.05           | < 0.05                | 311        | 22                 | <3.0                 | 1.6                    | <4.0                 | 3.7                   |
| AA Dd 51                          | < 0.05           | < 0.05                | 361        | 23                 | <3.0                 | 1.4                    | <4.0<br><4.0         | 3.7                   |
| AA Dd 52<br>AA Dd 53              | < 0.05<br>< 0.05 | < 0.05                | 687        | 23<br>28           | <3.0<br><3.0         | 1.4                    | <4.0<br>5.9          | 3.7                   |
| AA Dd 53<br>AA Dd 54              | < 0.05<br>< 0.05 | < 0.05                | 381        | 28<br>23           | <3.0<br><3.0         | 1.5                    | 5.9<br><4.0          | 3.8                   |
| AA Dd 54<br>AA Dd 55              | < 0.05           | < 0.05                | 271        | 23<br>22           | <3.0<br><3.0         | 1.6                    | <4.0<br>4.2          | 3.0<br>3.7            |
| AA Dd 53<br>AA Dd 57              |                  | < 0.05                |            | 22                 |                      |                        |                      |                       |
| AA Do 37<br>AA De 209             | <0.05<br><0.05   | < 0.05<br>< 0.05      | 726<br>395 | 27                 | <3.0<br><3.0         | 1.7                    | 5.0<br>8.0           | 3.9                   |
| AA De 209<br>AA De 210            | < 0.05<br>< 0.05 | < 0.05<br>< 0.05      | 395<br>463 | 22<br>24           |                      | 1.9                    |                      | 4.0                   |
| AA De 210<br>AA De 211            | < 0.05<br>< 0.05 | < 0.05<br>< 0.05      | 463<br>651 | 24<br>26           | <3.0<br><3.0         | 1.4                    | 7.4<br>5.2           | 3.9                   |
| AA De 211<br>AA De 212            | < 0.03<br>< 0.05 | < 0.05                | 281        | 20<br>20           | <3.0<br><3.0         | 1.9                    | 5.3                  | 3.9                   |
|                                   |                  |                       |            |                    |                      | 1.4                    | <4.0                 | 3.7                   |
| AA Ec 11 <sup>1</sup>             | < 0.05           | < 0.05                | 194        | 20                 | <3.0                 | 1.9                    | <4.0                 | 3.9                   |
| AA Ed 54<br>AA Ed 56 <sup>1</sup> | < 0.05           | < 0.05                | 486<br>277 | 38                 | 4.9                  | 2.6                    | 9.5                  | 4.1                   |
| AA Ed 50.<br>AA Ed 57             | <0.05<br><0.05   | <0.05<br><0.05        | 277        | 20<br>20           | <3.0                 | 1.5                    | <4.0                 | 3.8                   |
| AA Ed 57<br>AA Ee 85 <sup>1</sup> | < 0.05<br>< 0.05 | < 0.05<br>< 0.05      | 228<br>333 | 20<br>21           | <3.0<br><3.0         | 1.6                    | 6.9                  | 4.0<br>3.6            |
|                                   |                  |                       |            | 21                 | -                    | 1.5                    | <4.0                 | 3.6                   |
| AA Ee 86<br>AA Ef 39              | <0.05<br><0.05   | <0.05<br><0.05        | 308<br>312 | 21<br>21           | <3.0<br>5.5          | 1.9                    | 6.2                  | 4.0                   |
| AA El 35<br>AA Fd 54              | < 0.03<br>< 0.05 | < 0.05<br>< 0.05      | 293        | 21<br>21           |                      | 3.3                    | 4.2                  | 4.1                   |
| AA Fd 54<br>AA Fd 55              | < 0.05           | < 0.05                | 293<br>299 |                    | <3.0                 | 1.2                    | <4.0                 | 3.8                   |
| AA FO 33<br>AA Ge 14              |                  |                       |            | 21                 | <3.0                 | 1.4                    | 5.7                  | 3.9                   |
| AA UC 14                          | < 0.05           | < 0.05                | 246        | 20                 | <3.0                 | 1.5                    | 10                   | 4.1                   |

Appendix A. Water-quality data from wells sampled in this study -- Continued

ا.

**1**100

فعا

ريت

(m)

لت

ليت

ста,

أنث

أنشه

لانفنه

ليت

. المدن

3

. ای

ŝ

**(** 

<sup>1</sup> Treated sample.

|                       |                       | Radium-226         |                       | Radium-228         |                   | Uranium           |
|-----------------------|-----------------------|--------------------|-----------------------|--------------------|-------------------|-------------------|
| Well                  | Radium-226<br>(pCi/L) | 2 sigma<br>(pCi/L) | Radium-228<br>(pCi/L) | 2 sigma<br>(pCi/L) | Uranium<br>(µg/L) | 2 sigma<br>(µg/L) |
| AA Bc 242             | 1.4                   | 0.421              | 2.7                   | 0.8                | <1.0              | 0.1               |
| AA Bc 243             | 1.6                   | 0.46               | 2.4                   | 0.8                | <1.0              | 0.1               |
| AA Bc 244             | 2.3                   | 0.654              | 6.6                   | 1.6                | <1.0              | 0.1               |
| AA Bd 164             | 5.3                   | 1.19               | 11                    | 2.6                | <1.0              | 0.1               |
| AA Bd 165             | 4.9                   | 1.08               | 9.9                   | 2.3                | <1.0              | 0.1               |
|                       |                       |                    |                       |                    |                   |                   |
| AA Bd 166             | 6.7                   | 1.5                | 17                    | 3.9                | <1.0              | 0.3               |
| AA Bd 167             | 3.2                   | 0.848              | 4.7                   | 1.2                | <1.0              | 0.1               |
| AA Bd 168             | <0.1                  | 0.031              | <1.0                  | 0.4                | <1.0              | 0.1               |
| AA Be 115             | 4.8                   | 1.09               | 7.5                   | 1.8                | <1.0              | 0.2               |
| AA Be 116             | 14                    | 2.84               | 20                    | 4.4                | 1.1               | 0.4               |
| AA Bf 64              | 6.2                   | 1.35               | 15                    | 3.4                | <1.0              | 0.1               |
| AA Bf 65              | 9.1                   | 1.92               | 25                    | 5.5                | <1.0              | 0.2               |
| AA Bf 66              | 3.1                   | 0.756              | 5.0                   | 1.3                | <1.0              | 0.2               |
| AA Bf 67              | 4.8                   | 1.14               | 6.4                   | 1.6                | <1.0              | 0.1               |
| AA Bf 68              | 33                    | 6.33               | 33                    | 7.2                | 2.4               | 0.8               |
| AA Cc 133             | 0.2                   | 0.105              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Cc 134             | 9.7                   | 2.11               | 11                    | 2.6                | 14                | 4.1               |
| AA Cd 100             | 31                    | 6.14               | 35                    | 7.7                | <1.0              | 0.1               |
| AA Cd 101             | 0.2                   | 0.156              | 1.1                   | 0.5                | <1.0              | 0.1               |
| AA Cd 104             | 4.7                   | 1.14               | 13                    | 3.0                | <1.0              | 0.1               |
| AA Cd 105             | 0.6                   | 0.261              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Ce 141             | 0.3                   | 0.19               | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Ce 142             | <0.1                  | 0.091              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Cf 145             | <0.1                  | 0.076              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Cf 146             | <0.1                  | 0.086              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Cf 147             | <0.1                  | 0.108              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Cf 148             | <0.1                  | 0.119              | <1.0                  | 0.2                | <1.0              | 0.1               |
| AA Cf 149             | 0.1                   | 0.116              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Cg 26              | <0.1                  | 0.1                | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Dc 18              | 1.1                   | 0.351              | <1.0                  | 0.4                | <1.0              | 0.2               |
| AA Dd 51              | <0.1                  | 0.074              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Dd 52              | <0.1                  | 0.057              | <1.0                  | 0.4                | <1.0              | 0.1               |
| AA Dd 53              | 0.1                   | 0.112              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Dd 54              | <0.1                  | 0.08               | <1.0                  | 0.2                | <1.0              | 0.1               |
| AA Dd 55              | < 0.1                 | 0.082              | <1.0                  | 0.3                | <1.0              | 0.1               |
|                       |                       |                    |                       |                    |                   |                   |
| AA Dd 57              | <0.1                  | 0.084              | <1.0                  | 0.2                | <1.0              | 0.1               |
| AA De 209             | 0.1                   | 0.107              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA De 210             | 0.1                   | 0.128              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA De 211             | 0.3                   | 0.167              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA De 212             | <0.1                  | 0.085              | <1.0                  | 0.4                | <1.0              | 0.1               |
| AA Ec 11'             | <0.1                  | 0.06               | <1.0                  | 0.2                | <1.0              | 0.1               |
| AA Ed 54              | <0.1                  | 0.094              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Ed 56 <sup>1</sup> | <0.1                  | 0.046              | <1.0                  | 0.2                | <1.0              | 0.1               |
| AA Ed 57              | <0.1                  | 0.092              | <1.0                  | 0.2                | <1.0              | 0.1               |
| AA Ec 851             | <0.1                  | 0.083              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Ee 86              | <0.1                  | 0.069              | <1.0                  | 0.3                | <1.0              | 0.4               |
| AA Ef 39              | <0.1                  | 0.11               | <1.0                  | 0.2                | <1.0              | 0.2               |
| AA Fd 54              | <0.1                  | 0.076              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Fd 55              | <0.1                  | 0.043              | <1.0                  | 0.3                | <1.0              | 0.1               |
| AA Ge 14              | <0.1                  | 0.082              | <1.0                  | 0.2                | <1.0              | 0.1               |

Appendix A. Water-quality data from wells sampled in this study -- Continued

' Treated sample.

ána:

Ł

Į

l

# Appendix B. Well-construction and well-location data from wells sampled in this study

**ר**ו

۱. B

1000

(1997) (1997)

ر ایت

3

ر ا سی

| ا

ا است

**(**18

أضع

ز آنی

1655 1655

أهت

| [P, pesticide-targeted area; V, VC | DC-targeted area; R,  | , radon-targeted | area; dd, degrees; |
|------------------------------------|-----------------------|------------------|--------------------|
| mm, n                              | ninutes; ss, seconds; | ft, feet]        |                    |

| r           | Targeted | Well permit | Latitude   | Longitude  | USGS 7.5-minute | Approximate    |
|-------------|----------|-------------|------------|------------|-----------------|----------------|
| Well number | arca     | number      | (dd-mm-ss) | (dd-mm-ss) | quadrangle      | elevation (ft) |
| AA Bc 242   | P        | AA-73-7963  | 39-06-12   | 76-41-13   | ODENTON         | 100            |
| AA Bc 243   | P        | AA-88-5039  | 39-07-19   | 76-42-49   | ODENTON         | 160            |
| AA Bc 244   | v        | AA-74-2218  | 39-09-29   | 76-41-16   | RELAY           | 150            |
| AA Bd 164   | P        | AA-73-1807  | 39-07-24   | 76-36-06   | ROUND BAY       | 90             |
| AA Bd 165   | v        | AA-74-1429  | 39-08-32   | 76-39-45   | RELAY           | 120            |
| AA Bd 166   | P        | AA-73-3615  | 39-06-50   | 76-38-19   | ODENTON         | 90             |
| AA Bd 167   | v        | AA-92-0901  | 39-06-51   | 76-35-34   | ROUND BAY       | 120            |
| AA Bd 168   | P        | AA-73-7136  | 39-05-16   | 76-39-11   | ODENTON         | 130            |
| AA Be 115   | v        | AA-81-3304  | 39-06-40   | 76-30-09   | ROUND BAY       | 60             |
| AA Be 116   | v        | AA-73-6932  | 39-05-41   | 76-31-37   | ROUND BAY       | 20             |
| AA Bf 64    | P        | AA-73-4906  | 39-06-22   | 76-27-27   | GIBSON ISLAND   | 60             |
| AA Bf 65    | v        | AA-72-0797  | 39-06-29   | 76-29-14   | GIBSON ISLAND   | 50             |
| AA Bf 66    | v        | AA-81-5605  | 39-08-13   | 76-26-28   | SPARROWS POINT  | 10             |
| AA Bf 67    | v        | AA-88-8420  | 39-09-21   | 76-28-36   | SPARROWS POINT  | 5              |
| AA Bf 68    | v        | AA-81-7413  | 39-05-51   | 76-28-39   | GIBSON ISLAND   | 40             |
| AA Cc 133   |          | AA-92-1899  | 39-01-22   | 76-42-40   | ODENTON         | 70             |
| AA Cc 134   | v        | AA-88-1964  | 39-01-27   | 76-41-24   | ODENTON         | 110            |
| AA Cd 100   | P        | AA-81-1485  | 39-03-13   | 76-39-30   | ODENTON         | 130            |
| AA Cd 101   | v        | _           | 39-02-11   | 76-36-12   | ROUND BAY       | 160            |
| AA Cd 104   | v        | AA-81-2387  | 39-04-17   | 76-35-33   | ROUND BAY       | 70             |
| AA Cd 105   | P        |             | 39-00-38   | 76-36-17   | ROUND BAY       | 130            |
| AA Ce 141   | R        | AA-74-1246  | 39-01-05   | 76-33-30   | ROUND BAY       | 130            |
| AA Ce 142   | P        | AA-81-6083  | 39-00-02   | 76-31-51   | ROUND BAY       | 60             |
| AA Cf 145   | P        | AA-81-6428  | 39-01-00   | 76-25-14   | GIBSON ISLAND   | 10             |
| AA Cf 146   | P        | AA-86-0325  | 39-00-11   | 76-26-33   | GIBSON ISLAND   | 30             |
| AA Cf 147   |          | AA-73-3643  | 39-00-58   | 76-25-54   | GIBSON ISLAND   | 10             |
| AA Cf 148   | P        | ····        | 39-01-49   | 76-25-42   | GIBSON ISLAND   | 25             |
| AA Cf 149   | v        | AA-94-0330  | 39-00-43   | 76-29-57   | GIBSON ISLAND   | 50             |
| AA Cg 26    | v        | AA-73-8262  | 39-02-03   | 76-24-28   | GIBSON ISLAND   | 20             |
| AA Dc 18    | v        | AA-93-0137  | 38-59-29   | 76-40-12   | BOWIE           | 180            |
| AA Dd 51    | P        | AA-81-4277  | 38-56-01   | 76-39-09   | BOWIE           | 140            |
| AA Dd 52    | P        | AA-73-3159  | 38-57-02   | 76-40-01   | BOWIE           | 110            |
| AA Dd 53    | P        | AA-74-3937  | 38-57-26   | 76-38-17   | BOWIE           | 130            |
| AA Dd 54    | P        | AA-73-8343  | 38-58-44   | 76-38-03   | BOWIE           | 110            |
| AA Dd 55    | P        | AA-81-1266  | 38-57-56   | 76-38-44   | BOWIE           | 90             |
| AA Dd 57    | P        | AA-94-1728  | 38-56-19   | 76-36-13   | SOUTH RIVER     | 70             |
| AA De 209   | P        | AA-88-8082  | 38-57-41   | 76-32-41   | SOUTH RIVER     | 20             |
| AA De 210   | v        | AA-88-2908  | 38-59-50   | 76-30-38   | SOUTH RIVER     | 50             |
| AA De 211   | v        | AA-94-1197  | 38-56-50   | 76-31-51   | SOUTH RIVER     | 20             |
| AA De 212   | v        | AA-88-1851  | 38-56-58   | 76-33-34   | SOUTH RIVER     | 20             |
| AA Ec 11    | R        | AA-73-7240  | 38-55-00   | 76-40-28   | BOWIE           | 60             |
| AA Ed 54    | R        | AA-81-1926  | 38-53-49   | 76-38-13   | BOWIE           | 100            |
| AA Ed 56    | R        | AA-81-1424  | 38-51-43   | 76-38-03   | BRISTOL         | 180            |
| AA Ed 57    | R        | AA-86-0287  | 38-52-08   | 76-36-10   | DEALE           | 110            |
| AA Ec 85    | R        | AA-81-2501  | 38-50-19   | 76-31-04   | DEALE           | 5              |
| AA Ee 86    | R        | AA-93-0710  | 38-54-32   | 76-30-55   | SOUTH RIVER     | 5              |
| AA Ef 39    | v        | AA-81-1224  | 38-54-54   | 76-27-46   | ANNAPOLIS       | 5              |
| AA Fd 54    | R        | AA-93-1481  | 38-47-54   | 76-38-08   | BRISTOL         | 140            |
| AA Fd 55    | R        | AA-93-0845  | 38-46-32   | 76-35-28   | DEALE           | 120            |
| AA Ge 14    | R        | AA-81-8969  | 38-43-28   | 76-33-40   | NORTH BEACH     | 110            |
|             |          |             |            |            |                 |                |

46

(

Į

[

Į

Į

{ }

Ì

1

{

Į

{

{

{

ł

# [ft, feet]

|             |            |              |              | Well depth     | Top of open<br>interval | Bottom of open<br>interval |
|-------------|------------|--------------|--------------|----------------|-------------------------|----------------------------|
|             |            | Date of      | Type of      | (ft below land | (ft below land          | (ft below land             |
| Well number | Aquifer    | construction | construction | surface)       | surface)                | surface)                   |
| AA Bc 242   | Patapsco   | 09-02-1977   | Drilled      | 84             | 77                      | 84                         |
| AA Bc 243   | Patapsco   | 01-17-1991   | Drilled      | 87             | 80                      | 87                         |
| AA Bc 244   | Patapsco   | 08-25-1980   | Drilled      | 57             | 52                      | 57                         |
| AA Bd 164   | Patapsco   | 08-08-1973   | Drilled      | 70             | 63                      | 70                         |
| AA Bd 165   | Patapsco   | 11-20-1979   | Drilled      | 76             | 71                      | 76                         |
| AA Bd 166   | Patapsco   | 09-26-1974   | Drilled      | 70             | 63                      | 70                         |
| AA Bd 167   | Patapsco   | 01-13-1994   | Drilled      | 93             | 86                      | 93                         |
| AA Bd 168   | Patapsco   | 04-05-1977   | Drilled      | 125            | 120                     | 125                        |
| AA Be 115   | Patapsco   | 06-08-1984   | Drilled      | 81             | 74                      | 81                         |
| AA Be 116   | Patapsco   | 02-02-1977   | Drilled      | 65             | 60                      | 65                         |
| AA Bf 64    | Magothy    | 08-14-1975   | Drilled      | 90             | 83                      | 90                         |
| AA Bf 65    | Patapsco   | 01-13-1972   | Drilled      | 70             | 60                      | 70                         |
| AA Bf 66    | Patapsco   | 11-15-1985   | Drilled      | 66             | 59                      | 66                         |
| AA Bf 67    | Patapsco   | 08-28-1992   | Drilled      | 92             | 85                      | 92                         |
| AA Bf 68    | Magothy    | 11-03-1986   | Drilled      | 60             | 52                      | 60                         |
| AA Cc 133   | Patapsco   | 09-02-1994   | Drilled      | 131            | 126                     | 131                        |
| AA Cc 134   | Magothy    | 02-06-1989   | Drilled      | 104            | 99                      | 104                        |
| AA Cd 100   | Magothy    | 03-24-1983   | Drilled      | 82             | 77                      | 82                         |
| AA Cd 101   | Aquia      | -            | Dug          | 30             | 0                       | 30                         |
| AA Cd 104   | Patapsco   | 11-01-1983   | Drilled      | 90             | 70                      | 90                         |
| AA Cd 105   | Aquia      |              | Dug          | 30             | 0                       | 30                         |
| AA Ce 141   | Magothy    | 10-09-1979   | Drilled      | 205            | 198                     | 205                        |
| AA Ce 142   | Aquia      | 03-20-1986   | Drilled      | 105            | 95                      | 105                        |
| AA Cf 145   | Aquia      | 07-15-1986   | Drilled      | 120            | 113                     | 120                        |
| AA Cf 146   | Aquia      | 06-13-1988   | Drilled      | 87             | 35                      | 87                         |
| AA Cf 147   | Aquia      | 11-15-1974   | Drilled      | 67             | 60                      | 67                         |
| AA Cf 148   | Aquia      | -            | Dug          | 30             | 0                       | 30                         |
| AA Cf 149   | Aquia      | 04-09-1996   | Drilled      | 105            | 98                      | 105                        |
| AA Cg 26    | Aquia      | 11-01-1977   | Drilled      | 67             | 60                      | 67                         |
| AA Dc 18    | Aquia      | 11-29-1994   | Drilled      | 79             | 74                      | 79                         |
| AA Dd 51    | Aquia      | 02-13-1985   | Drilled      | 135            | 125                     | 135                        |
| AA Dd 52    | Aquia      | 09-04-1974   | Drilled      | 90             | 78                      | 90                         |
| AA Dd 53    | Aquia      | 11-30-1981   | Drilled      | 80             | 75                      | 80                         |
| AA Dd 54    | Aquia      | 11-15-1977   | Drilled      | 80             | 73                      | 80                         |
| AA Dd 55    | Aquia      | 01-14-1983   | Drilled      | 50             | 45                      | 50                         |
| AA Dd 57    | Aquia      | 07-26-1997   | Drilled      | 46             | 36                      | 46                         |
| AA De 209   | Aquia      | 06-26-1992   | Drilled      | 82             | 75                      | 82                         |
| AA De 210   | Aquia      | 06-30-1989   | Drilled      | 130            | 120                     | 130                        |
| AA De 211   | Aquia      | 01-23-1997   | Drilled      | 51             | 41                      | 51                         |
| AA De 212   | Aquia      | 01-09-1989   | Drilled      | 92             | 84                      | 92                         |
| AA Ec 11    | Magothy    | 05-13-1977   | Drilled      | 185            | 180                     | 185                        |
| AA Ed 54    | Aquia      | 07-09-1983   | Drilled      | 165            | 158                     | 165                        |
| AA Ed 56    | Aquia      | 04-25-1983   | Drilled      | 245            | 230                     | 245                        |
| AA Ed 57    | Aquia      | 08-12-1988   | Drilled      | 275            | 268                     | 275                        |
| AA Ee 85    | Aquia      | 12-18-1983   | Drilled      | 152            | 145                     | 152                        |
| AA Ee 86    | Aquia      | 05-15-1995   | Drilled      | 43             | 36                      | 43                         |
| AA Ef 39    | Aquia      | 12-28-1982   | Drilled      | 53             | 46                      | 53                         |
| AA Fd 54    | Aquia      | 12-06-1995   | Drilled      | 315            | 308                     | 315                        |
| AA Fd 55    | -<br>Aquia | 06-26-1995   | Drilled      | 310            | 300                     | 310                        |
| AA Ge 14    | -<br>Aquia | 09-19-1987   | Drilled      | 371            | 361                     | 371                        |

### APPENDIX C

### WATER-QUALITY CONSTITUENTS AND SAMPLE CONTAINER DESCRIPTIONS, PRESERVATIONS, AND TREATMENTS

Appendix C1. Chemical and bacteriological constituents analyzed in this study

Appendix C2. Sample container designations, container descriptions, and sample preservation and treatment

Cancer group definitions:

- Cancer group A: Human carcinogen. Sufficient evidence in epidemiological studies to support causal association between exposure and cancer.
- Cancer group B: Probable human carcinogen. Limited evidence in epidemiological studies (group B1) and/or sufficient evidence from animal studies (group B2).
- Cancer group C: Possible human carcinogen. Limited evidence from animal studies and inadequate or no data in humans.

Cancer group D: Not classifiable. Inadequate or no human or animal evidence of carcinogenicity.

[Source: U.S. Environmental Protection Agency, 1996]

### Appendix C1. Chemical and bacteriological constituents analyzed in this study

أيب

لى

**ر**س

(TP)

1400

Participant of the second s

<u>ل</u>يت

. [دید]

[GC/MS, gas chromatography/mass spectrometry; μg/L, micrograms per liter; EPA, Environmental Protection Agency Region III Central Laboratory; -, not assigned to any cancer group. Sample container designations are described in appendix C2]

| Constituent                             | Type of<br>analysis | EPA<br>method or<br>reference | Reporting<br>level<br>(μg/L) | Laboratory | Sample<br>container<br>designation | Cancer group |
|-----------------------------------------|---------------------|-------------------------------|------------------------------|------------|------------------------------------|--------------|
| VOLATILE ORGANIC COM                    | POUNDS:             |                               |                              |            |                                    |              |
| Benzene                                 | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | A            |
| Carbon tetrachloride                    | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| Chlorodibromomethane                    | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | с            |
| Bromodichloromethane                    | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| 1,1-dichloroethane                      | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                |              |
| 1,1-dichloroethylene                    | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | С            |
| 1,2-dichloropropane                     | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| Methylene chloride<br>(dichloromethane) | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| Toluene                                 | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | D            |
| Trichloroethylene                       | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| Vinyl chloride                          | GC/MS               | 524.2                         | 1.0                          | ЕРА        | GVC                                | A            |
| 1,3-dichlorobenzene                     | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | D            |
| Styrene                                 | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | С            |
| cis-1,2-dichloroethene                  | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | D            |
| Bromoform                               | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| Chlorobenzene                           | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | -            |
| Chloroform                              | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| Dichlorodifluoromethane                 | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | D            |
| 1,2-dichloroethane                      | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | B2           |
| 1,2-trans-dichloroethene                | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | D            |
| Ethylbenzene                            | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | D            |
| Tetrachloroethylene                     | GC/MS               | 524.2                         | 1.0                          | EPA        | GVC                                | -            |
| 1,1,1-trichloroethane                   | GC/MS               | 524.2                         | 1.0                          | ЕРА        | GVC                                | D            |

### Appendix C1. Chemical and bacteriological constituents analyzed in this study --Continued

[GC/MS, gas chromatography/mass spectrometry; µg/L, micrograms per liter; pCi/L, picocuries per liter; EPA, Environmental Protection Agency Region III Central Laboratory; MGS, Maryland Geological Survey; NWQL, U.S. Geological Survey National Water Quality Laboratory; Q, Quanterra Environmental Services; -, not assigned to any cancer group. Sample container designations are described in appendix C2]

| Constituent                               | Type of<br>analysis                                   | EPA<br>method or<br>reference  | Reporting<br>level | Laboratory | Sample<br>container<br>designation | Cancer group  |  |  |
|-------------------------------------------|-------------------------------------------------------|--------------------------------|--------------------|------------|------------------------------------|---------------|--|--|
| VOLATILE ORGANIC C                        | VOLATILE ORGANIC COMPOUNDS (continued):               |                                |                    |            |                                    |               |  |  |
| Trichlorofluoromethane                    | GC/MS                                                 | 524.2                          | 1.0 µg/L           | EPA        | GVC                                | _             |  |  |
| 1,2-dichlorobenzene                       | GC/MS                                                 | 524.2                          | 1.0 μg/L           | EPA        | GVC                                | D             |  |  |
| 1,4-dichlorobenzene                       | GC/MS                                                 | 524.2                          | 1.0 μg/L           | EPA        | GVC                                | с             |  |  |
| Xylene                                    | GC/MS                                                 | 524.2                          | 1.0 µg/L           | EPA        | GVC                                | D             |  |  |
| Methyl <i>tert</i> -butyl ether<br>(MTBE) | GC/MS                                                 | 524.2                          | 5 μg/L<br>(est.)   | EPA        | GVC                                | C (tentative) |  |  |
| Trichlorotrifluoroethane                  | GC/MS                                                 | 524.2                          | 1.0 µg/L           | EPA        | GVC                                |               |  |  |
| PESTICIDES:                               |                                                       |                                |                    |            |                                    | _             |  |  |
| Atrazine                                  | Immunoassay                                           | Hayes and<br>others<br>(1996)  | 0.05 µg/L          | MGS        | LC0114                             | с             |  |  |
| Metolachlor                               | Immunoassay                                           | Lawruk<br>and others<br>(1993) | 0.05 μg/L          | MGS        | LC0114                             | с             |  |  |
| RADIONUCLIDES:                            |                                                       |                                |                    |            |                                    |               |  |  |
| Radon                                     | Liquid<br>scintillation                               | 913.0<br>(draft)               | 80 pCi/L           | NWQL       | LC1369                             | A             |  |  |
| Radium-226                                | Precipitation;<br>planchet<br>counting                | 903.0                          | 0.1 pCi/L          | Q          | FAR                                | A             |  |  |
| Radium-228                                | Radiochemi-<br>cal separation<br>and beta<br>counting | 904.0                          | 1.0 pCi/L          | Q          | FAR                                | A             |  |  |
| Uranium                                   | Fluorometry                                           | 908.1                          | 1.0 μ <u>g/L</u>   | Q          | FAR                                | A             |  |  |
| Gross alpha-particle<br>activity          | Residue<br>procedure                                  | 900.0                          | 3.0 pCi/L          | NWQL       | FAR                                | A             |  |  |
| Gross beta-particle<br>activity           | Residue<br>procedure                                  | 900.0                          | 4.0 pCi/L          | NWQL       | FAR                                | A             |  |  |

# Appendix C1. Chemical and bacteriological constituents analyzed in this study --Continued

ļ

1010

1000

[ICP, inductively-coupled plasma; AA, atomic absorption; IC, ion-exchange chromatography; μg/L, micrograms per liter; mg/L, milligrams per liter; CaCO<sub>3</sub>, calcium carbonate; NWQL, U.S. Geological Survey National Water Quality Laboratory; MDH, Maryland Department of Health and Mental Hygiene Laboratory; -, not assigned to any cancer group. Sample container designations are described in appendix C2]

| Coortinunt                 | Type of            | EPA<br>Method or<br>reference               | Reporting<br>Level              |      | Sample<br>container<br>designation |   |  |
|----------------------------|--------------------|---------------------------------------------|---------------------------------|------|------------------------------------|---|--|
|                            |                    |                                             |                                 |      |                                    |   |  |
| BACTERIOLOGICA             | L CONSTITUEN       | VIS:                                        |                                 |      | [                                  |   |  |
| Escherichia coli           | Colorimetric       | Eaton, Clesceri,<br>and Greenberg<br>(1995) | presence/<br>absence            | MDH  | В                                  | - |  |
| Total coliform<br>bacteria | Colorimetric       | Eaton, Clesceri,<br>and Greenberg<br>(1995) | presence/<br>absence            | MDH  | В                                  | - |  |
| INORGANIC CONS             | TITUENTS ANI       | D INDICATORS:                               |                                 |      |                                    |   |  |
| Calcium                    | ICP                | Fishman (1993)                              | 0.02 mg/L                       | NWQL | FA                                 | - |  |
| Magnesium                  | ICP                | Fishman (1993)                              | 0.01 mg/L                       | NWQL | FA                                 |   |  |
| Sodium                     | ICP                | Fishman (1993)                              | 0.2 mg/L                        | NWQL | FA                                 | - |  |
| Potassium                  | AA                 | Fishman and<br>Friedman (1989)              | 0.1 mg/L                        | NWQL | FA                                 | - |  |
| Chloride                   | IC                 | Fishman (1993)                              | 0.1 mg/L                        | NWQL | FU                                 | - |  |
| Sulfate                    | IC                 | Fishman (1993)                              | 0.1 mg/L                        | NWQL | FU                                 | _ |  |
| Alkalinity                 | Electro-<br>metric | Fishman and<br>Friedman (1989)              | l mg/L as<br>CaCO,              | NWQL | FU                                 | - |  |
| Fluoride                   | Colori-<br>metric  | Fishman and<br>Friedman (1989)              | 0.1 mg/L                        | NWQL | FU                                 | - |  |
| Iron (filtered)            | ICP                | Fishman (1993)                              | 3 μg/L                          | NWQL | FA                                 | - |  |
| Iron (unfiltered)          | AA                 | Fishman and<br>Friedman (1989)              | 10 μg/L                         | NWQL | RA                                 | - |  |
| Manganese<br>(filtered)    | ICP                | Fishman (1993)                              | l μg/L                          | NWQL | FA                                 |   |  |
| Manganese<br>(unfiltered)  | AA                 | Fishman and<br>Friedman (1989)              | 10 μg/L                         | NWQL | RA                                 | - |  |
| Silica                     | Colori-<br>metric  | Fishman and<br>Friedman (1989)              | 0.1 mg/L as<br>SiO <sub>2</sub> | NWQL | FU                                 | - |  |
| Residue at 180°<br>Celsius | Gravimetric        | Fishman and<br>Friedman (1989)              | t mg/L                          | NWQL | FU                                 | - |  |

<sup>1</sup> Also measured in the field

### Appendix C1. Chemical and bacteriological constituents analyzed in this study --Continued

[GFAA, graphite furnace atomic absorption; ICP, inductively-coupled plasma;  $\mu g/L$ , micrograms per liter; mg/L, milligrams per liter;  $\mu$ S/cm, microsiemens per centimeter at 25° Celsius; NWQL, U.S. Geological Survey National Water Quality Laboratory; MDH, Maryland Department of Health and Mental Hygiene Laboratory; --, not assigned to any cancer group. Sample container designations are described in appendix C2]

| Constituent                                        | Type of<br>analysis                   | EPA method or<br>reference               | Reporting<br>level | Laboratory        | Sample<br>container<br>designation | Cancer group |  |
|----------------------------------------------------|---------------------------------------|------------------------------------------|--------------------|-------------------|------------------------------------|--------------|--|
| INORGANIC CONSTITUENTS AND INDICATORS (continued): |                                       |                                          |                    |                   |                                    |              |  |
| pH                                                 | Electro-<br>metric                    | Fishman and<br>Friedman (1989)           | -                  | NWQL <sup>1</sup> | RU                                 | -            |  |
| Specific conductance                               | Electro-<br>metric                    | Fishman and<br>Friedman (1989)           | 1 μS/cm            | NWQL <sup>1</sup> | RU                                 | -            |  |
| Color                                              | Electro-<br>metric                    | Fishman and<br>Friedman (1989)           | 1.0 color units    | NWQL              | RCB                                | -            |  |
| Nitrate + nitrite<br>(as nitrogen)                 | Colori-<br>metric                     | 353.2                                    | 0.2 mg/L           | MDH               | с                                  | under review |  |
| Ammonia (as N)                                     | Colori-<br>metric                     | 350.1                                    | 0.2 mg/L           | MDH               | с                                  | D            |  |
| Arsenic                                            | GFAA                                  | 200.9                                    | 1.0 μg/L           | NWQL              | ERA                                | A            |  |
| Beryllium                                          | ICP                                   | 200.7                                    | 2.0 μg/L           | NWQL              | ERA                                | B2           |  |
| Lead                                               | ICP                                   | 200.9                                    | 1.0 μg/L           | NWQL              | ERA                                | B2           |  |
| Dissolved<br>oxygen (DO)                           | Titration<br>or<br>electro-<br>metric | 360.2 <sup>2</sup> or 360.1 <sup>3</sup> | 0.1 mg/L           | field             | BOD                                | -            |  |

<sup>1</sup> Also measured in field.

<sup>2</sup> For DO measured by titration method.

<sup>3</sup> For DO measured by electrometric method.

# Appendix C2. Sample container designations, container descriptions, and sample preservation and treatment

| Sample container<br>designation | Container description                                 | Sample preservation and treatment                                                                                        |
|---------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| GVC                             | Amber glass vial                                      | Unfiltered, unrinsed, acidified with HCl to $pH < 2$ ; chilled and maintained at 4° C; delivered to lab within 24 hours. |
| LC0114                          | Amber glass bottle, baked at 450° C.<br>by laboratory | Unfiltered, unrinsed, chilled and maintained at 4° C., shipped immediately.                                              |
| LC1369                          | Glass bottle with mineral oil                         | Sample injected into oil and shaken; shipped same day via overnight courier.                                             |
| FAR                             | Polyethylene bottle, acid-ninsed                      | $0.45\mu$ -filtered, acidified with HNO <sub>3</sub> to pH < 2.                                                          |
| FA                              | Polyethylene bottle, acid-rinsed                      | 0.45 $\mu$ -filtered, rinsed with filtered sample, acidified with HNO <sub>3</sub> to pH<2.                              |
| FU                              | Polyethylene bottle                                   | 0.45µ-filtered, rinsed with filtered sample.                                                                             |
| RA                              | Polyethylene bottle, acid-rinsed                      | Unfiltered, rinsed with sample, acidified with $HNO_3$ to $pH < 2$ .                                                     |
| RU                              | Polyethylene bottle                                   | Unfiltered, rinsed with sample.                                                                                          |
| RCB                             | Polyethylene bottle                                   | Unfiltered, rinsed with sample, chilled and maintained to 4° C., shipped immediately.                                    |
| С                               | Cubitainer (polyethylene container)                   | Unfiltered, acidified with $H_2SO_4$ to pH < 2, chilled and maintained at 4° C., delivered to lab within 24 hours.       |
| ERA                             | Polyethylene bottle, acid-rinsed                      | Unfiltered, acidified with HNO <sub>3</sub> to pH<2.                                                                     |
| В                               | Polyethylene bottle                                   | Unfiltered, unrinsed, chilled and maintained at 4°C; delivered to lab within 24 hours.                                   |
| BOD                             | Glass-stoppered glass bottle                          | None (sample titrated immediately after collection).                                                                     |

[C, Centigrade;  $\mu$ , micron]

ļ

### APPENDIX D

### SUMMARY OF QUALITY-ASSURANCE SAMPLE DATA

Quality-assurance samples were submitted to the laboratories throughout the sampling program in order to monitor for sample contamination and document analytical precision. QA data for this study consisted of analyses of trip blank samples, field blank samples, and duplicate samples. Most QA samples were collected early in the sampling program to ensure that any problems were identified and corrected. Both field blanks and trip blanks were submitted with selected VOC samples. Field blanks were submitted at selected times with all other critical-constituent samples except radon.

<u>Blank samples.</u> Blank samples were submitted to determine whether contamination occurred during sample collection, processing, or transport. Blank samples consisted of field blanks and trip blanks. Field blanks were sample bottles filled with inorganic- and organic-free water treated with the same procedures as were used when collecting the environmental samples. Trip blanks were sample bottles filled with organic-free water bottled under clean conditions and transported with the environmental samples. Sixteen field blank samples were collected, including four VOC blanks, three atrazine and metolachlor blanks, three radionuclide blanks, three nutrient blanks, and three trace-element (arsenic, beryllium, and lead) blanks. All field blanks except one were below reporting limits. The one exception was a nitrate blank (0.3 mg/L) which was slightly higher than the reporting limit (0.2 mg/L). VOC trip blanks were collected and submitted with each batch of VOC samples. VOC concentrations in all trip blanks were below MRLs.

<u>Duplicate samples.</u> Duplicate samples were submitted to document laboratory precision and variation in sample water during the collection process. Eighteen duplicate samples were collected, including 4 VOC duplicates, 4 radionuclide duplicates, 3 bacteria duplicates, 4 nutrient duplicates, and 3 trace-element duplicates. Duplicate immunoassay tests were conducted on all samples that were analyzed for atrazine and metolachlor. One set of duplicate radon samples (523 pCi/L and 651 pCi/L, respectively) exceeded the precision requirements specified in the QA project plan. Nitrate concentrations from a set of duplicate samples (3.5 mg/L and 5.0 mg/L) did not meet the precision requirements. Consultation with the project quality-assurance officer resulted in the decision to not resample the wells where the precision exceedances occurred. All other duplicate samples were within precision requirements.

<u>Other quality-assurance samples.</u> Nitrate and ammonium samples from two wells were analyzed by the NWQL to document comparability of the nutrient analyses analyzed by the Maryland Department of Health and Mental Hygiene Laboratory. Nitrate concentrations in the environmental and duplicate samples were within 0.1 mg/L of one another in each pair of samples; ammonium was not detected in any of the four samples.

No reference samples or other samples of known concentration were submitted for analysis for this study because there were no specific project accuracy requirements other than the internal requirements of the individual laboratories and for the pesticide immunoassay analyses. Percent-recovery data on VOCs from the USGS National Water-Quality Assessment

55

Program have indicated that there is little loss of volatiles in transport (J. Zogorski, U.S. Geological Survey, oral commun., 1997). Atrazine and metolachlor samples of known concentration were not submitted because the additional expenses for equipment, materials, and laboratory analysis were not considered to be justified for a pilot project of limited scope.

Samples from four wells were analyzed by GC/MS for a suite of 22 pesticides (including atrazine and metolachlor) and pesticide metabolites as a check on the immunoassay method. The wells tested included Bd 166, which had the only pesticide detection by immunoassay in the pilot study (metolachlor;  $0.2 \mu g/L$ ). The four wells were chosen on the basis of the perceived likelihood of having pesticide detections. None of the 22 pesticides was detected in any of the four wells, suggesting that the immunoassay detection in Bd 166 was a false-positive detection. False-positive detections are occasionally encountered in immunoassay techniques; false-negative detections have been shown to be very rare (Gruessner, Shambaugh, and Watzin, 1995; Maryland Geological Survey, unpublished data).

# A LIST OF PUBLICATIONS is available from

MARYLAND GEOLOGICAL SURVEY 2300 St. Paul Street Baltimore, Maryland 21218-5210

> Telephone: (410) 554-5500 Fax: (410) 554-5502

Visit our web site: publications@mgs.dnr.md.gov